

CC Loire et Semène

Profil climat air énergie édité le : 15/12/2023

 ${\bf Code\ territoire:244301131}$

LES PROFILS CLIMAT AIR ÉNERGIE EN AUVERGNE-RHÔNE-ALPES

L'observatoire régional du climat, de l'air et de l'énergie d'Auvergne-Rhône-Alpes (ORCAE) met à disposition des territoires s'engageant dans l'élaboration d'un plan climat-air-énergie territorial, des données et analyses nécessaires à la réalisation d'un diagnostic en termes de :

- Énergie (consommation et production);
- Émissions de gaz à effet de serre (GES) et de polluants;
- Séquestration nette de carbone;
- Réseaux de distribution et de transport d'énergie;
- Impacts des effets du changement climatique.

Ces profils sont disponibles pour tous les territoires d'Auvergne-Rhône-Alpes. Les impacts du changement climatique sont disponibles uniquement dans profils des EPCI et des TEPOS.

Données et Méthodologie

Les données mises à disposition dans les profils ORCAE sont les dernières données disponibles au moment de l'édition des profils. Les dates des données sont indiquées dans les différents graphiques. Les séries historiques sont recalculées pour prendre en compte les évolutions méthodologiques. Les données publiées dans les profils peuvent donc présenter des différences avec les données diffusées dans les tableaux de données et dans la synthèse chiffres-clés, si la méthodologie de calcul des données a évolué entre les dates de publication des différents documents. Les données à considérer comme valables sont les données les plus récentes.

Certaines données sont évaluées par une méthode d'extrapolation des données historiques (modèle ARIMA). Il en découle que ces données et leurs évolutions, qui intègrent ces données estimées, sont à considérer avec une marge d'incertitude. Il s'agit notamment des données de consommation, d'émissions de GES et polluants pour l'année 2022.

La méthodologie d'estimation de calcul des données est consultable sur le site de l'ORCAE dans l'onglet Méthodologie.

Le millésime des communes et les périmètres des territoires sont ceux de 2023 selon le code officiel géographique de l'INSEE.

Depuis 2023, les données des émissions de GES prises en compte dans les profils incluent les émissions de GES fluorés (HFC, PFC et SF6).

Certaines données sont confidentielles. Il s'agit soit de confidentialité directe, soit de confidentialité indirecte induite par une confidentialité directe (en savoir plus sur la confidentialité et la secrétisation des données). Ces données sont repérées par un « S » dans les tableaux. L'ORCAE a mis en place un processus de levée de la confidentialité pour les territoires qui en font la demande. Pour lever la confidentialité des données de votre territoire, contactez l'ORCAE : contact@orcae-auvergne-rhone-alpes.fr.

ÉVOLUTIONS PAR RAPPORT À LA VERSION PRÉCÉDENTE

Les principales nouveautés et évolutions sont les suivantes :

- Mise à jour des données avec le millésime 2022 (2021 pour certaines données);
- Ventilation de la valorisation énergétique des déchets entre la production renouvelable et non renouvelable à hauteur de 50% entre EnR et non EnR pour la production d'électricité ou de chaleur conformément à la législation française
- Fiabilisation de l'historique (avant 2017) des productions d'énergie des filières hydro-électrique, solaire photovoltaïque et biogaz;
- Nouveaux facteurs d'émissions pris en compte notamment pour le chauffage au bois;
- Mise à jour de la méthodologie de calcul des secteurs résidentiel et transport routier;
- Ajout de liens vers l'Observatoire régional sur l'agriculture et le changement climatique (ORACLE).

CONTACT

Pour toute précision concernant les profils climat air énergie territoriaux : contact@orcae-auvergne-rhone-alpes.fr

Table des matières

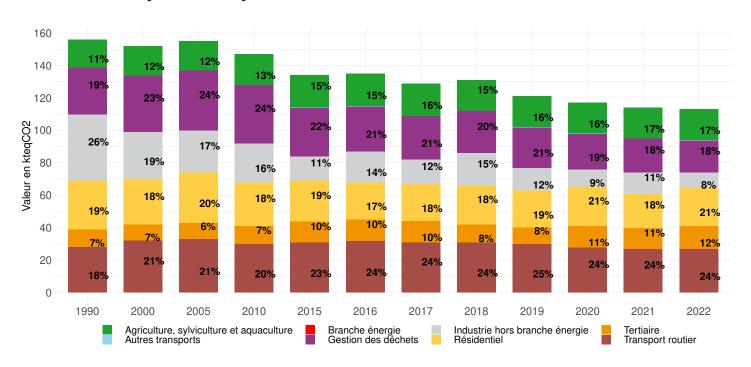
Émissions de gaz à effet de serre	5
Émissions totales de GES (à climat normal)	6
Émissions de GES dans le secteur Résidentiel (à climat normal)	. 7
Émissions de GES dans le secteur Tertiaire (à climat normal)	. 8
Émissions de GES dans le secteur Industrie hors branche énergie (à climat normal)	9
Émissions de GES dans le secteur Gestion des déchets (à climat normal)	9
Émissions de GES dans le secteur Branche énergie (à climat normal)	10
Émissions de GES dans le secteur Transport routier (à climat normal)	. 11
Émissions de GES dans le secteur Autres transports (à climat normal)	. 12
Émissions de GES dans le secteur Agriculture, sylviculture et aquaculture (à climat normal)	13
Qualité de l'air	14
Concentration de polluants atmosphériques	15
Exposition des populations aux polluants atmosphériques	16
Bilan des émissions de polluants atmosphériques	. 17
Séquestration nette de dioxyde de carbone	18
Puits de carbone du territoire : stocks, flux absorbés, changement d'affectation des sols	19
Consommation d'énergie finale	21
Consommation d'énergie finale totale (à climat normal)	. 22
Consommation d'énergie finale dans le secteur Résidentiel (à climat normal)	23
Consommation d'énergie finale dans le secteur Tertiaire (à climat normal)	24
Consommation d'énergie finale dans le secteur Industrie hors branche énergie (à climat normal)	25
Consommation d'énergie finale dans le secteur Gestion des déchets (à climat normal)	. 26
Consommation d'énergie finale dans le secteur Branche énergie (à climat normal)	. 27
Consommation d'énergie finale dans le secteur Transport routier (à climat normal)	. 28
Consommation d'énergie finale dans le secteur Autres transports (à climat normal)	. 29
Consommation d'énergie finale dans le secteur Agriculture, sylviculture et aquaculture (à climat normal)	30
Réseaux de distribution et de transport d'énergie	31
Communes desservies par le gaz	32
Réseaux de transport et de distribution de chaleur - Données	. 33

Production d'énergie	34
Production d'énergie - Situation globale	. 35
Production d'électricité renouvelable électrique - Hydroélectricité	. 36
Valorisation énergétique - Biogaz	. 37
Production d'électricité renouvelable électrique - Photovoltaïque	. 38
Production de chaleur renouvelable - Solaire thermique	. 39
Production de chaleur renouvelable - Bois énergie et autres biomasses solides	. 40
Production de chaleur renouvelable - PAC	. 41
$oxed{ ext{Potentiels de production enR}}$	42
Éolien	. 43
Biogaz	. 45
Solaire thermique	. 47
Solaire photovoltaïque	. 49
Bois	. 52
Flux d'énergie	53
flux d'énergie en 2021	. 54
Observations climatiques	55
Températures moyennes	. 56
Journées chaudes	. 57
Précipitations	. 58
Fortes pluies	. 59
Nombre de jours de gel	. 60
Impacts sur la ressource en eau	61
Bilan hydrique	. 62
Débit des cours d'eau	. 63
Sévérité des étiages	. 64
Impacts sur les risques naturels	65
Risque météorologique de feux de forêt	. 66
Arrêtés catastrophes naturelles - sécheresse	. 67
Impacts sur la biodiversité	68
Indicateurs phénologiques et relation avec les températures	. 69
Aires de répartition des espèces	. 70

Impacts sur la santé	72
Hyperthermie et surmortalité lors d'épisodes de canicules	73
Pathologies cardio-vasculaires et respiratoires liées à la qualité de l'air	73
Allergies dues à l'augmentation de la concentration des pollens	74
Cancers liés à l'exposition aux ultraviolets (UV) $\dots \dots \dots$	75
Risques sanitaires dus à une dégradation de la qualité des eaux	75
Maladies à vecteur	75
Turner de sum la surellad de Dado	76
Impacts sur la qualité de l'air	,,
Impacts sur la quante de l'air Impacts sur l'agriculture et la sylviculture	78
	78
Impacts sur l'agriculture et la sylviculture	78 79
Impacts sur l'agriculture et la sylviculture Phénologie des prairies	78 79
Impacts sur l'agriculture et la sylviculture Phénologie des prairies	78 79 80
Impacts sur l'agriculture et la sylviculture Phénologie des prairies	78 79 80 81

ÉMISSIONS DE GAZ À EFFET DE SERRE ¹

ÉMISSIONS TOTALES DE GES (À CLIMAT NORMAL) 1


Dynamiques d'évolution

Par rapport à l'année précédente	-2%
Depuis 2015	-16%
Depuis 2005	-28%
Depuis 1990	-28%

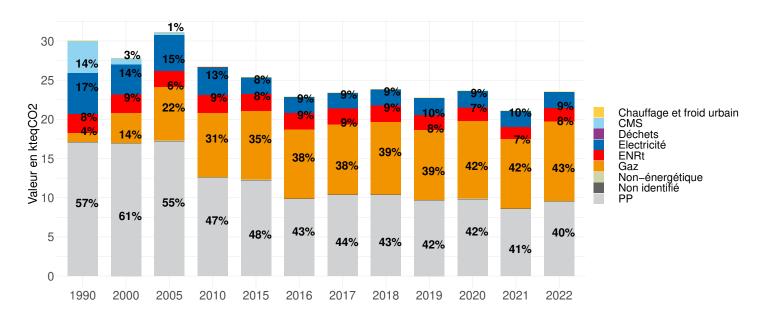
Évolution de la part de chaque énergie dans les émissions totales de GES

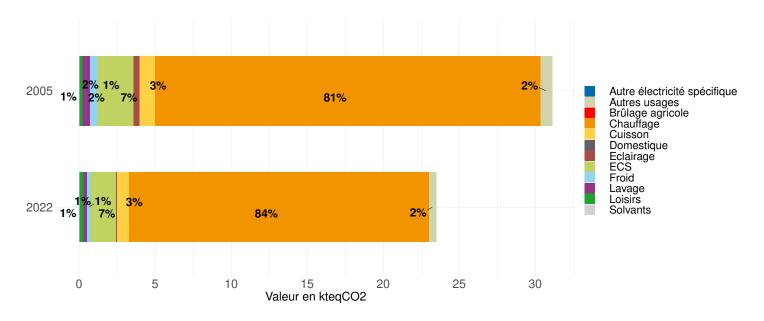
En raison de données confidentielles sur votre territoire, ces éléments ne sont pas diffusables.

Évolution de la part de chaque secteur dans les émissions totales de GES

Données d'émissions de GES (en kteq CO2) par secteur et par énergie

	Chauffage et froid urbain	$_{\mathrm{CMS}}$	Déchets	Electricité	ENRt	Gaz	Non-énergétique	Non identifié	PP	Toutes énergies
Résidentiel	0	0	0	2	2	10	0	0	9	24
Tertiaire	0	0	0	0	0	11	2	0	1	14
Industrie hors branche énergie	0	0	0	2	0	S	0	S	2	9
Gestion des déchets	0	0	0	0	0	0	20	0	0	20
Branche énergie	0	0	0	0	0	0	0	0	0	0
Transport routier	0	0	0	0	0	0	0	0	27	27
Autres transports	0	0	0	0	0	0	0	0	0	0
Agriculture, sylviculture et aquaculture	0	0	0	0	0	0	18	0	1	19
Tous secteurs	0	0	0	4	2	S	41	S	40	113

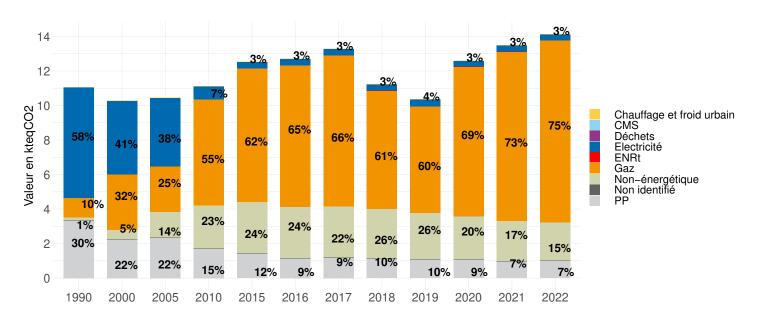

^{1.} Données 2022 : estimation prédictive $\ensuremath{\mathsf{ARIMA}}$

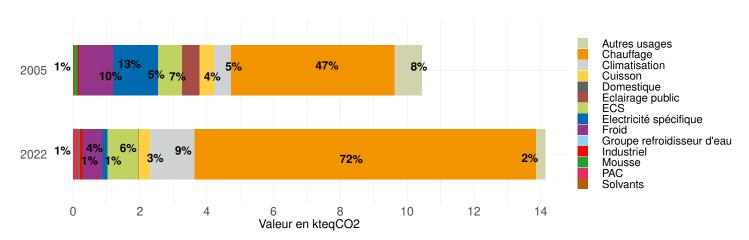

ÉMISSIONS DE GES DANS LE SECTEUR RÉSIDENTIEL (À CLIMAT NORMAL) 1

Dynamiques d'évolution

Par rapport à l'année précédente	12%
Depuis 2015	-7%
Depuis 2005	-25%
Depuis 1990	-22%

Évolution de la part de chaque énergie dans les émissions de GES du secteur


^{1.} Données 2022 : estimation prédictive ARIMA


ÉMISSIONS DE GES DANS LE SECTEUR TERTIAIRE (À CLIMAT NORMAL) 1

Dynamiques d'évolution

Par rapport à l'année précédente	5%
Depuis 2015	13%
Depuis 2005	35%
Depuis 1990	28%

Évolution de la part de chaque énergie dans les émissions de GES du secteur

^{1.} Données 2022 : estimation prédictive ARIMA

ÉMISSIONS DE GES DANS LE SECTEUR INDUSTRIE HORS BRANCHE ÉNERGIE (À CLIMAT NORMAL) 1

Dynamiques d'évolution

Par rapport à l'année précédente	-34%
Depuis 2015	-43%
Depuis 2005	-67%
Depuis 1990	-79%

Évolution de la part de chaque énergie dans la consommation du secteur

À l'heure actuelle, les données disponibles pour ce secteur ne permettent pas une analyse par énergie.

Évolution de la part de chaque usage dans les émissions de GES du secteur

À l'heure actuelle, les données disponibles pour ce secteur ne permettent pas une analyse par usage.

ÉMISSIONS DE GES DANS LE SECTEUR GESTION DES DÉCHETS (À CLIMAT NORMAL) 2

Dynamiques d'évolution

Par rapport à l'année précédente	-6%
Depuis 2015	-34%
Depuis 2005	-47%
Depuis 1990	-32%

Évolution de la part de chaque énergie dans la consommation du secteur

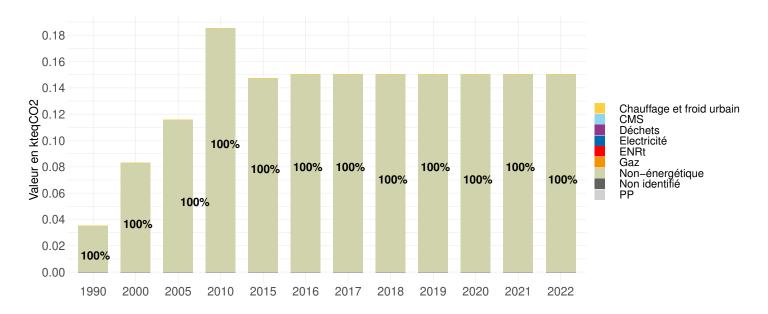
À l'heure actuelle, les données disponibles pour ce secteur ne permettent pas une analyse par énergie.

Évolution de la part de chaque usage dans les émissions de GES du secteur

À l'heure actuelle, les données disponibles pour ce secteur ne permettent pas une analyse par usage.

15/12/2023

^{1.} Données 2022 : estimation prédictive ARIMA


^{2.} Données 2022 : estimation prédictive ARIMA

ÉMISSIONS DE GES DANS LE SECTEUR BRANCHE ÉNERGIE (À CLIMAT NORMAL) 1

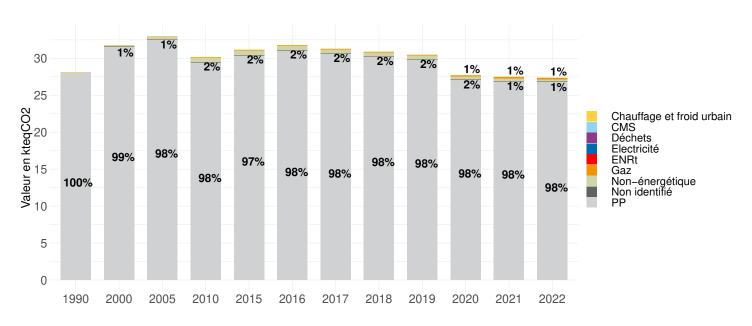
Dynamiques d'évolution

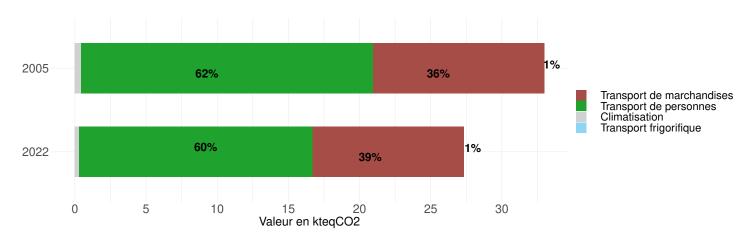
Par rapport à l'année précédente	0%
Depuis 2015	2%
Depuis 2005	30%
Depuis 1990	329%

Évolution de la part de chaque énergie dans les émissions de GES du secteur

Évolution de la part de chaque usage dans la consommation du secteur

À l'heure actuelle, les données disponibles pour ce secteur ne permettent pas une analyse par usage.

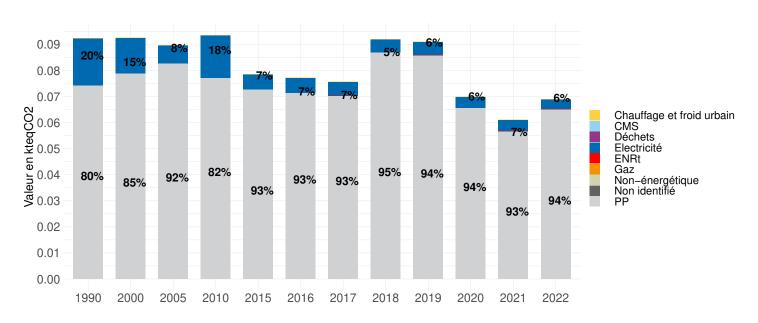

^{1.} Données 2022 : estimation prédictive ARIMA

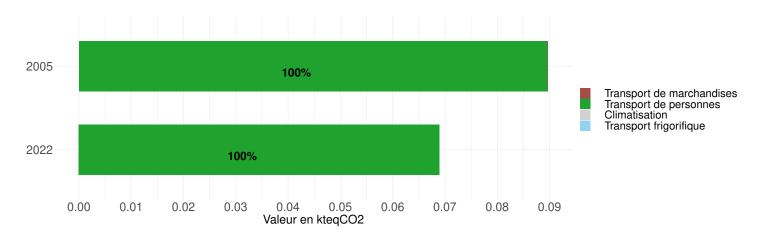

ÉMISSIONS DE GES DANS LE SECTEUR TRANSPORT ROUTIER (À CLIMAT NORMAL) 1

Dynamiques d'évolution

Par rapport à l'année précédente	0%
Depuis 2015	-12%
Depuis 2005	-17%
Depuis 1990	-3%

Évolution de la part de chaque énergie dans les émissions de GES du secteur

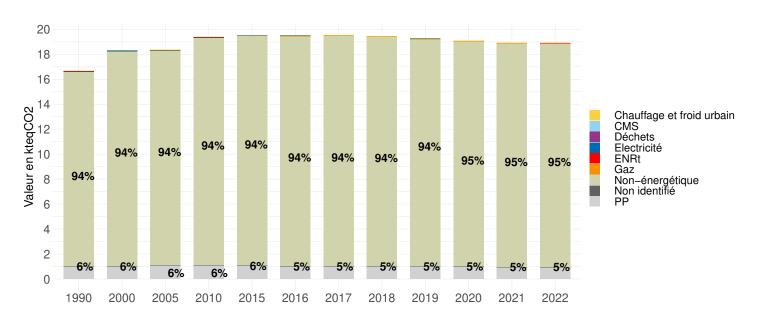

^{1.} Données 2022 : estimation prédictive ARIMA

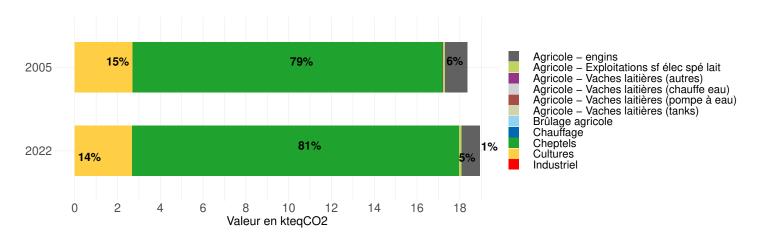

ÉMISSIONS DE GES DANS LE SECTEUR AUTRES TRANSPORTS (À CLIMAT NORMAL) 1

Dynamiques d'évolution

Par rapport à l'année précédente	13%
Depuis 2015	-12%
Depuis 2005	-23%
Depuis 1990	-25%

Évolution de la part de chaque énergie dans les émissions de GES du secteur


^{1.} Données 2022 : estimation prédictive ARIMA


ÉMISSIONS DE GES DANS LE SECTEUR AGRICULTURE, SYLVICULTURE ET AQUACULTURE (À CLIMAT NORMAL) 1

Dynamiques d'évolution

Par rapport à l'année précédente	0%
Depuis 2015	-3%
Depuis 2005	3%
Depuis 1990	13%

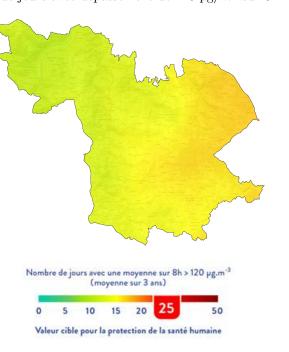
Évolution de la part de chaque énergie dans les émissions de GES du secteur


^{1.} Données 2022 : estimation prédictive ARIMA

Concentration de polluants atmosphériques ¹

Cartographies annuelles de concentrations de polluants dans l'air 2022

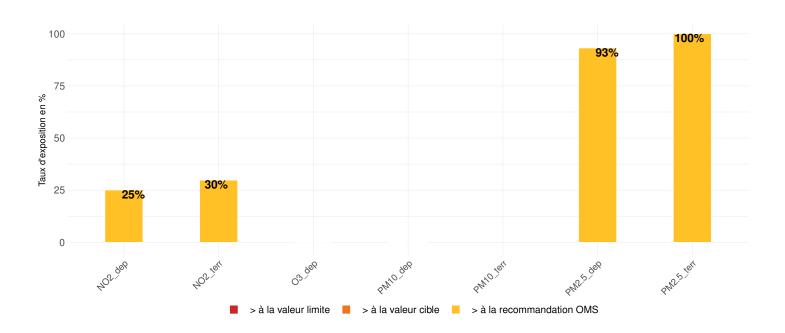
Dioxyde d'azote - NO_2 Moyenne annuelle en $\mu g/m^3$



Particules - PM10 Moyenne annuelle en $\upmu{\rm g}/m^3$

 ${\rm Ozone \text{ - } O_3}$ Nb de jours avec dépassement de 120 µg/m³ sur 8h

Particules - PM2.5 Moyenne annuelle en $\mu \mathrm{g}/m^3$



^{1.} Données 2022

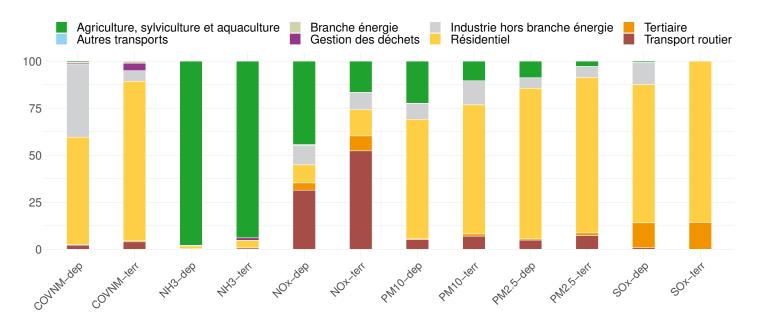
Exposition des populations aux polluants atmosphériques ¹

Pourcentage de population exposée à des dépassements de la réglementation européenne ou des seuils définis par l'OMS sur le territoire (à droite) en comparaison du département ² (à gauche) en 2022

Clés de lecture du graphique

Pour chaque polluant, le dioxyde d'azote NO2, l'ozone O3, les particules fines PM10 et les particules très fines PM2,5, les barres verticales visualisent la proportion d'habitants exposés à des concentrations annuelles de qualité de l'air supérieures à des valeurs de référence ³ : valeurs annuelles limite ou cible (directive européenne) et seuils annuels recommandés par l'Organisation mondiale de la santé (OMS).

Quand l'exposition est nulle, la barre verticale est absente du graphique (pas d'étiquette correspondante). Quand l'étiquette est présente mais que la barre n'est pas présente, cela signifie que l'exposition est très faible.


Les calculs « d'exposition de la population » sont établis en croisant les informations relatives à un bilan annuel de qualité de l'air avec les données démographiques fournies par l'INSEE : il s'agit donc d'habitants (résidence principale) au sens du recensement, il n'y a pas de spatialisation des personnes suivant les lieux de travail, de déplacement ou autres lieux d'activités.

Plus d'infos:

- La pollution de l'air, c'est quoi?
- Pollution de l'air : origines, situation et impacts
- Pollution de l'air : normes et seuils réglementaires
- Qualité de l'air ambiant et santé
- Indices et normes Atmo
- 1. Données 2022
- 2. Pour les territoires situés sur plusieurs départements, le département retenu pour le graphique est celui, localisé en région Auvergne-Rhône-Alpes, incluant le plus de communes du territoire
 - 3. Valeurs de référence

Bilan des émissions de polluants atmosphériques ¹

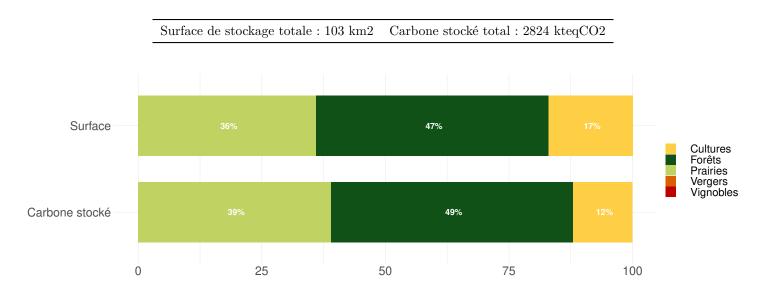
Contributions des secteurs d'activité dans les émissions des polluants (en tonnes) sur le territoire (à droite) et sur le département (à gauche) en 2022

Émissions des polluants (en tonnes) sur le territoire et sur le département en 2022 2

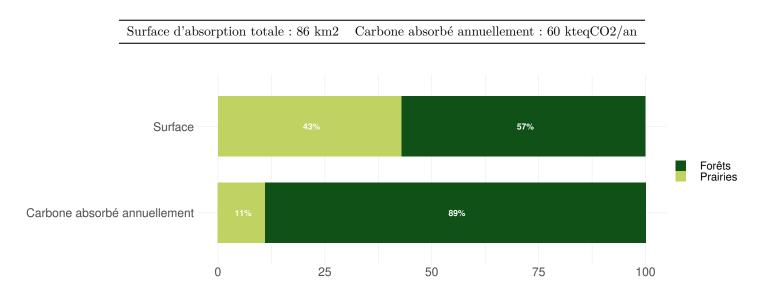
Polluant	Département	Territoire
COVNM*	3739	176
NH3	6471	148
NOx**	3151	151
PM10	1506	85
PM2.5	1168	69
SOx	127	7

^{1.} Données 2022 : estimation prédictive ARIMA

^{2.} pour les territoires situés sur deux départements, le département retenu pour le graphique est celui, localisé en région Auvergne-Rhône-Alpes, incluant le plus de communes du territoire.


^{*}COVNM : composés organiques volatils non méthaniques

^{**}NOx : composés chimiques contenant azote et oxygène (oxyde d'azote)



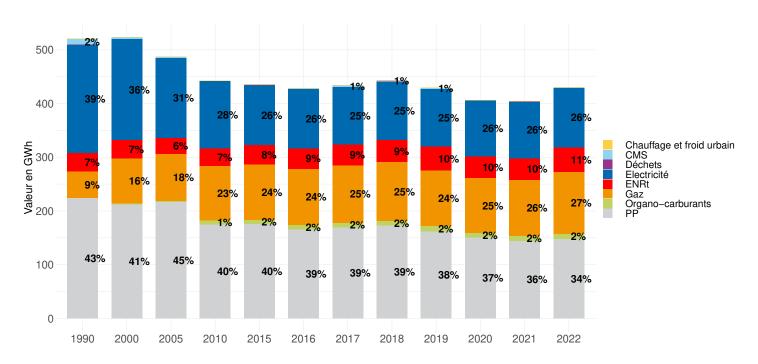
Puits de carbone du territoire : stocks, flux absorbés, changement d'affectation des sols

Stock de carbone par type de surface

Flux annuels d'absorption de carbone par type de surface

Flux annuels de carbone dus aux changements d'affectation des sols (CAS)

CAS total	0 ha/an
Carbone émis annuellement suite au CAS	0 kteqCO2/an
Carbone absorbé annuellement suite au CAS	0 kteqCO2/an


Consommation d'énergie finale ¹

CONSOMMATION D'ÉNERGIE FINALE TOTALE (À CLIMAT NORMAL) 1

Dynamiques d'évolution

Par rapport à l'année précédente	6%
Depuis 2015	-1%
Depuis 2005	-12%
Depuis 1990	-17%

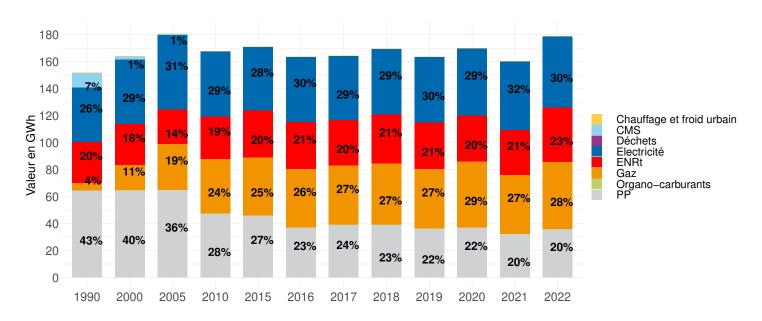
Évolution de la part de chaque énergie dans la consommation d'énergie finale

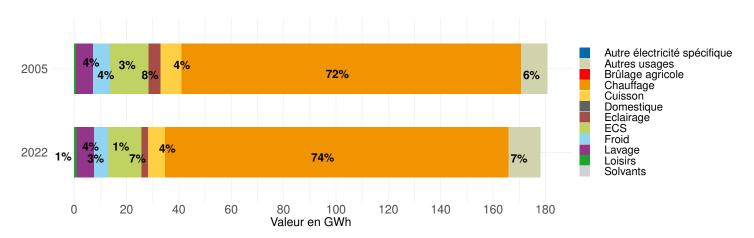
Évolution de la part de chaque secteur dans la consommation d'énergie finale

En raison de données confidentielles sur votre territoire, ces éléments ne sont pas diffusables.

Consommation d'énergie finale par secteur et par énergie (en GWh)

	Chauffage et froid urbain	CMS	Déchets	Electricité	ENRt	Gaz	Organo-carburants	PP	Toutes énergies
Résidentiel	0	0	0	53	40	50	0	36	179
Tertiaire	0	0	0	9	1	52	0	4	66
Industrie hors branche énergie	0	0	0	46	6	12	0	5	69
Gestion des déchets	0	0	0	1	0	0	0	0	1
Branche énergie	0	0	0	0	0	0	0	0	0
Transport routier	0	0	0	0	0	1	9	99	110
Autres transports	0	0	0	0	0	0	0	0	0
Agriculture, sylviculture et aquaculture	0	0	0	1	0	0	0	3	5
Tous secteurs	0	0	0	111	46	115	10	148	430

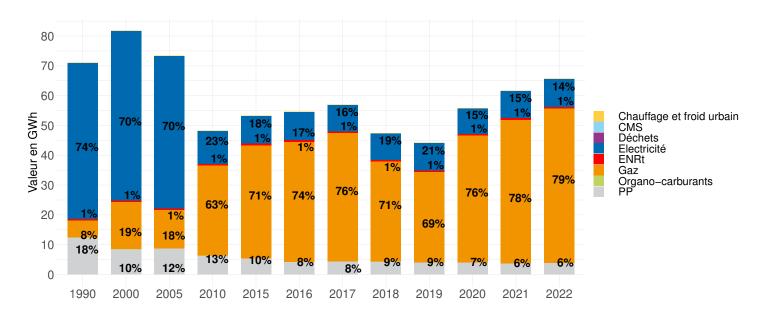

^{1.} Données 2022 : estimation prédictive ARIMA

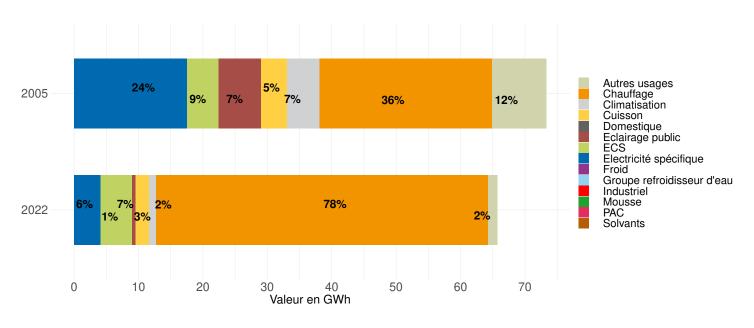

Consommation d'énergie finale dans le secteur Résidentiel (à climat normal) 1

Dynamiques d'évolution

Par rapport à l'année précédente	11%
Depuis 2015	5%
Depuis 2005	-1%
Depuis 1990	18%

Évolution de la part de chaque énergie dans la consommation du secteur


^{1.} Données 2022 : estimation prédictive ARIMA


Consommation d'énergie finale dans le secteur Tertiaire (à climat normal) 1

Dynamiques d'évolution

Par rapport à l'année précédente	7%
Depuis 2015	23%
Depuis 2005	-10%
Depuis 1990	-8%

Évolution de la part de chaque énergie dans la consommation du secteur

^{1.} Données 2022 : estimation prédictive ARIMA

Consommation d'énergie finale dans le secteur Industrie hors branche énergie (à climat normal) 1

Dynamiques d'évolution

Par rapport à l'année précédente	5%
Depuis 2015	indisponible
Depuis 2005	-29%
Depuis 1990	-62%

Évolution de la part de chaque énergie dans la consommation du secteur

En raison de données confidentielles sur votre territoire, ces éléments ne sont pas diffusables.

Évolution de la part de chaque usage dans la consommation du secteur

À l'heure actuelle, les données disponibles pour ce secteur ne permettent pas une analyse par usage.

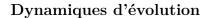
^{1.} Données 2022 : estimation prédictive ARIMA

Consommation d'énergie finale dans le secteur Gestion des déchets (à climat normal) 1

Dynamiques d'évolution

Par rapport à l'année précédente	-4%
Depuis 2015	indisponible
Depuis 2005	-88%
Depuis 1990	-86%

Évolution de la part de chaque énergie dans la consommation du secteur


En raison de données confidentielles sur votre territoire, ces éléments ne sont pas diffusables.

Évolution de la part de chaque usage dans la consommation du secteur

A l'heure actuelle, les données disponibles pour ce secteur ne permettent pas une analyse par usage.

^{1.} Données 2022 : estimation prédictive ARIMA

Consommation d'énergie finale dans le secteur Branche énergie (à climat normal) 1

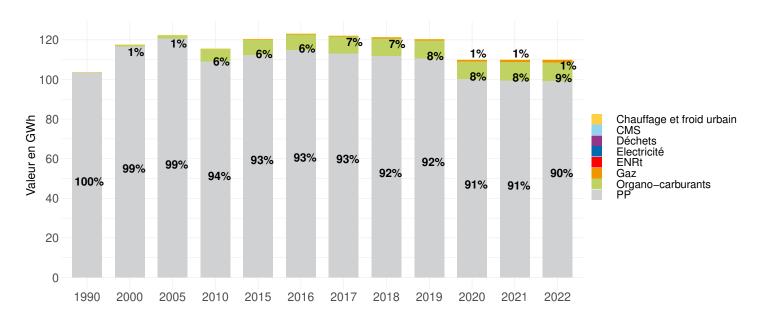
Nous n'avons pas identifié de données dans ce secteur sur ce territoire.

Évolution de la part de chaque énergie dans la consommation du secteur

Nous n'avons pas identifié de données dans ce secteur sur ce territoire.

Évolution de la part de chaque usage dans la consommation du secteur

A l'heure actuelle, les données disponibles pour ce secteur ne permettent pas une analyse par usage.

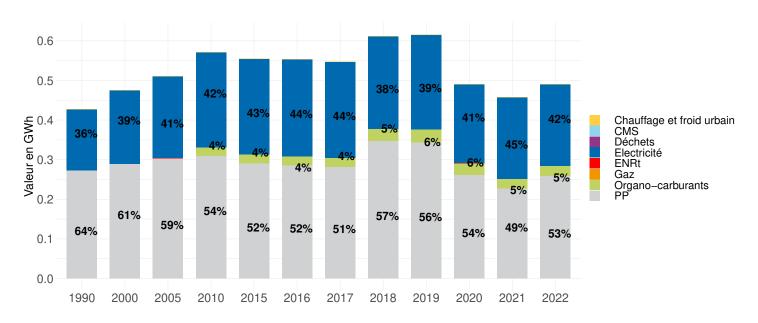

^{1.} Données 2022 : estimation prédictive ARIMA

Consommation d'énergie finale dans le secteur Transport routier (à climat normal) 1

Dynamiques d'évolution

Par rapport à l'année précédente	0%
Depuis 2015	-9%
Depuis 2005	-10%
Depuis 1990	6%

Évolution de la part de chaque énergie dans la consommation du secteur

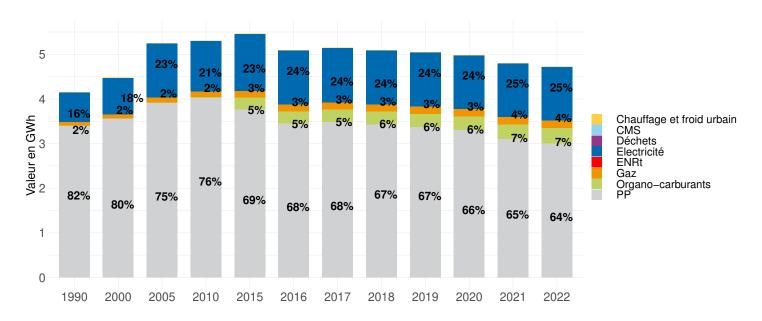

^{1.} Données 2022 : estimation prédictive ARIMA

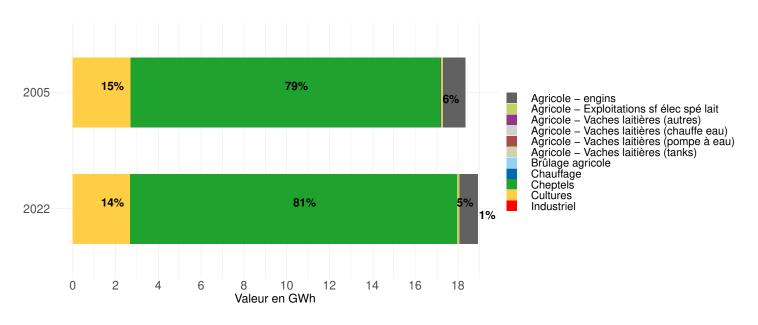
Consommation d'énergie finale dans le secteur Autres transports (à climat normal) 1

Dynamiques d'évolution

Par rapport à l'année précédente	7%
Depuis 2015	-12%
Depuis 2005	-4%
Depuis 1990	15%

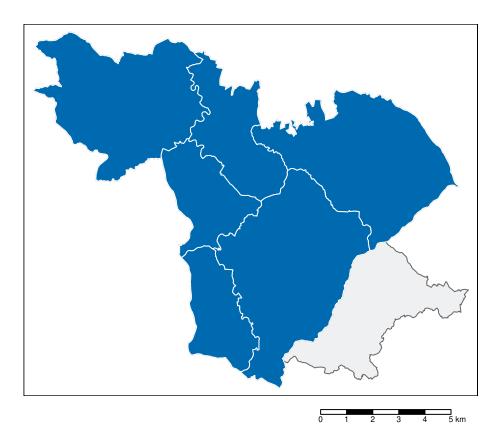
Évolution de la part de chaque énergie dans la consommation du secteur


^{1.} Données 2022 : estimation prédictive ARIMA


Consommation d'énergie finale dans le secteur Agriculture, sylviculture et aquaculture (à climat normal) 1

Dynamiques d'évolution

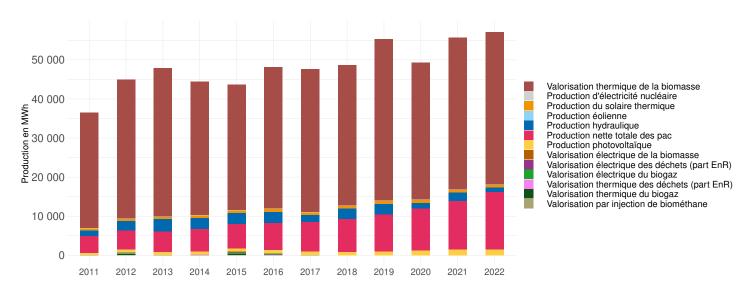
Par rapport à l'année précédente	-2%
Depuis 2015	-14%
Depuis 2005	-10%
Depuis 1990	14%


Évolution de la part de chaque énergie dans la consommation du secteur

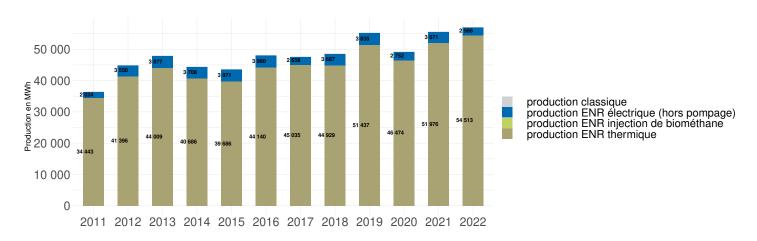
^{1.} Données 2022 : estimation prédictive ARIMA

Les communes desservies par le gaz apparaissent en bleu sur le graphique.

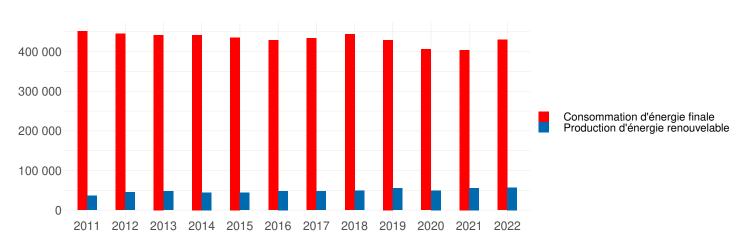
^{1.} Données 2023. Sources : Portail Open Data GRD


Réseaux de transport et de distribution de chaleur - Données

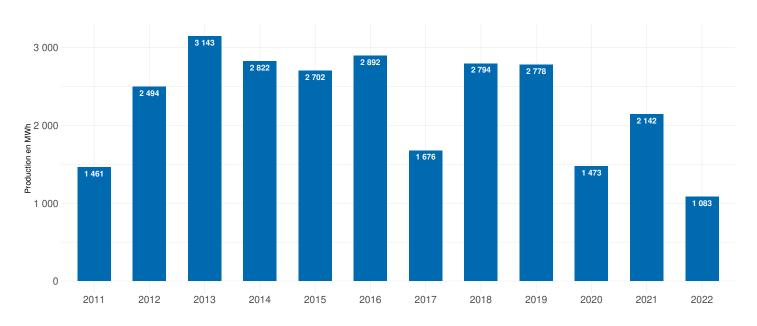
Aucune production	n énergétique n'a pu	être identifiée pour	cette analyse.
-------------------	----------------------	----------------------	----------------



Production d'énergie - Situation globale


Évolution de la production d'énergie sur le territoire (en MWh)

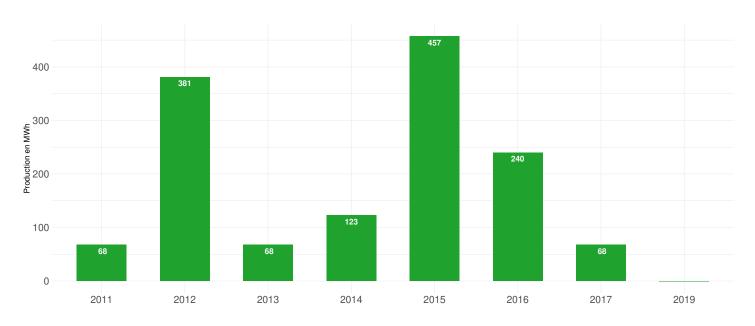
Répartition de la production d'énergie sur le territoire par type (en MWh)



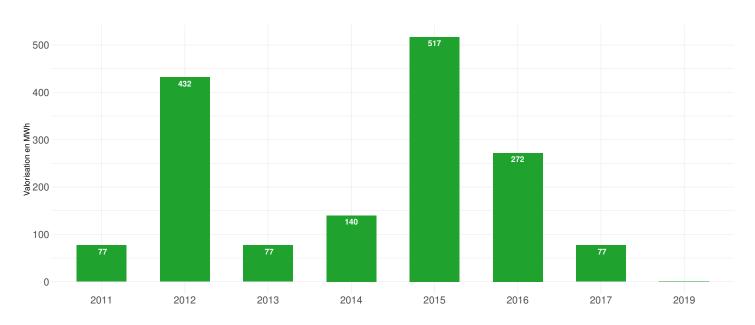
Évolution comparée de la consommation d'énergie finale et de la production d'énergie renouvelable locale (en MWh)

Production d'électricité renouvelable électrique - Hydroélectricité

Production estimée (en MWh)



Installations hydroélectriques


indicateur	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
nombre installations <4.5 MW	3	3	3	3	4	4	4	4	4	4	4	5
nombre installations >4.5 MW	0	0	0	0	0	0	0	0	0	0	0	0
nombre installations pompages	0	0	0	0	0	0	0	0	0	0	0	0
production hydro $<4.5 \text{ MW}$ en MWh	1461	2494	3143	2822	2702	2892	1676	2794	2778	1473	2142	1083
production hydro >4.5 MW en MWh	0	0	0	0	0	0	0	0	0	0	0	0
production pompage en MWh	0	0	0	0	0	0	0	0	0	0	0	0
production totale (dont pompages) en MWh	1461	2494	3143	2822	2702	2892	1676	2794	2778	1473	2142	1083
production totale (hors pompages) en MWh	1461	2494	3143	2822	2702	2892	1676	2794	2778	1473	2142	1083
puissance hydro <4.5 MW	1	1	1	1	1	1	1	1	1	1	1	1
puissance hydro >4.5 MW	0	0	0	0	0	0	0	0	0	0	0	0
puissance pompages en MW	0	0	0	0	0	0	0	0	0	0	0	0
puissance totale en MW	1	1	1	1	1	1	1	1	1	1	1	1

Valorisation énergétique - Biogaz

Production électrique estimée (en MWh)

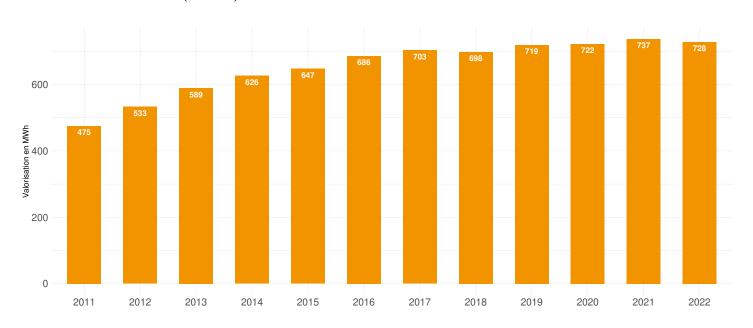
Valorisation thermique estimée (en MWh)

Installations de valorisation énergétique du biogaz

indicateur	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
nombre unités de valorisation biogaz	1	1	1	1	1	1	1	0	1	0	0	0
valorisation électrique en MWh	68	381	68	123	457	240	68	0	0	0	0	0
valorisation par injection de biométhane en MWh	0	0	0	0	0	0	0	0	0	0	0	0
valorisation thermique en MWh	77	432	77	140	517	272	77	0	0	0	0	0
valorisation totale en MWh	145	813	145	263	974	511	145	0	0	0	0	0

Production d'électricité renouvelable électrique - Photovoltaïque

Production estimée (MWh)

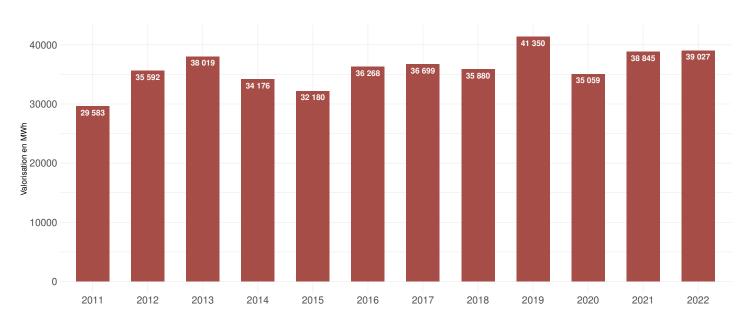


Installations photovoltaïques

indicateur	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
nombre installations BT $<$ 36 kVA	149	163	172	180	184	192	198	205	223	239	268	316
nombre installations BT >36 kVA	1	1	1	1	1	1	1	1	1	1	1	1
nombre installations de niveau de tension non identifié	0	0	0	0	0	0	0	0	0	0	0	0
nombre installations HT	0	0	0	0	0	0	0	0	0	1	1	1
nombre d'installations totales	148	162	171	179	183	191	197	204	224	241	270	318
production BT $<$ 36 en MWh	415	474	478	558	603	647	707	692	851	859	862	1064
production BT $>$ 36 en MWh	81	200	188	204	209	201	204	200	206	199	191	222
production des installations de niveau de tension non identifié en MWh	0	0	0	0	0	0	0	0	0	0	0	0
production totale en MWh	495	674	666	762	812	848	912	892	1057	1279	1529	1503
production HT en MWh	0	0	0	0	0	0	0	0	0	222	475	217
puissance totale en MW	1	1	1	1	1	1	1	1	1	1	2	2
puissance BT <36 kVA en MW	1	1	1	1	1	1	1	1	1	1	1	1
puissance BT >36 kVA en MW	0	0	0	0	0	0	0	0	0	0	0	0
puissance des installations de niveau de tension non identifié en MW	0	0	0	0	0	0	0	0	0	0	0	0
puissance HT en MW	0	0	0	0	0	0	0	0	0	0	0	0

Production de Chaleur renouvelable - Solaire thermique

Production estimée (MWh)



Installations solaire thermique

indicateur	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
valorisation thermique en MWh	475	533	589	626	647	686	703	698	719	722	737	728
surface capteurs en m^2	940	1045	1152	1217	1257	1326	1364	1362	1377	1377	1383	1391

Production de chaleur renouvelable - Bois énergie et autres biomasses solides

Production estimée (MWh)

Installations bois énergie

indicateur	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
valorisation thermique en MWh	29583	35592	38019	34176	32180	36268	36699	35880	41350	35059	38845	39027

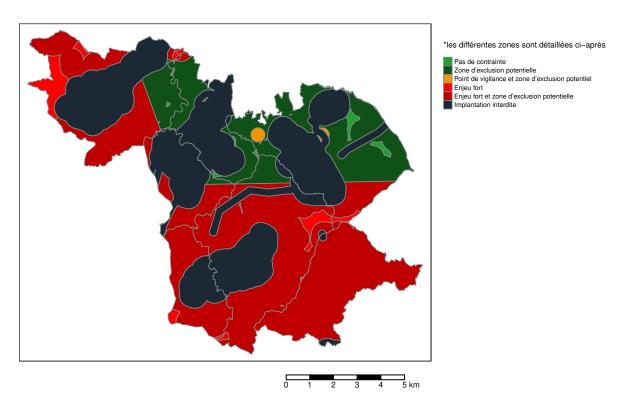
Production de Chaleur Renouvelable - PAC

Production estimée des PAC aérothermiques (MWh)

Production estimée des PAC géothermiques (MWh)

Installations PAC

indicateur	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
nombre de PAC totales	195	219	241	260	287	313	342	378	424	484	561	668
nombre de PAC aérothermiques	144	165	185	204	229	255	282	316	362	422	498	603
nombre de PAC géothermiques	51	54	56	56	58	58	60	62	62	62	63	65
production nette des PAC aérothermiques	3181	3645	4087	4507	5059	5634	6230	6981	7998	9323	11002	13322
production nette des PAC géothermiques	1127	1193	1237	1237	1281	1281	1326	1370	1370	1370	1392	1436
production nette des PAC totales	4308	4838	5324	5744	6341	6915	7556	8351	9368	10693	12394	14758


ÉOLIEN

Il s'agit des zones favorables au développement de l'éolien. Ces zones sont identifiées en croisant des contraintes sur différentes thématiques : « Patrimoine culturel et historique », « Patrimoine naturel », « Servitudes et contraintes aériennes et terrestres » et « Infrastructures ».

A noter:

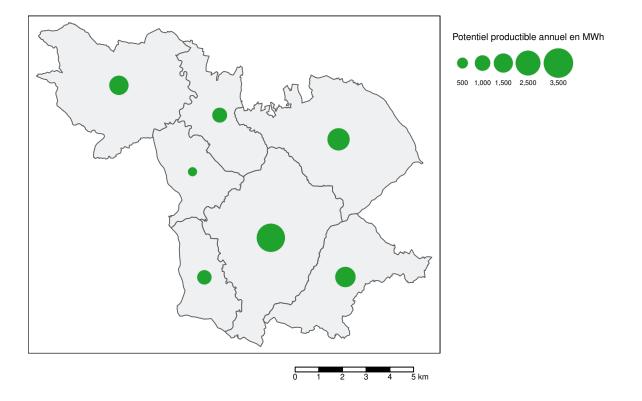
- ce travail n'a pas de valeur juridique ni réglementaire. Il s'agit d'une estimation automatique d'un gisement éolien prenant en compte les contraintes réglementaires et environnementales. Les éléments de cette estimation ne sont pas opposables à une éventuelle procédure d'autorisation d'un parc éolien;
- la méthodologie ne tient pas compte des installations existantes : des zones considérées comme favorables à l'éolien peuvent déjà être occupées par des éoliennes ;
- ce travail couvre les systèmes de production d'électricité du « grand éolien », le « petit éolien » n'étant pas abordé ici.

Zones favorables au développement de l'éolien sur le territoire

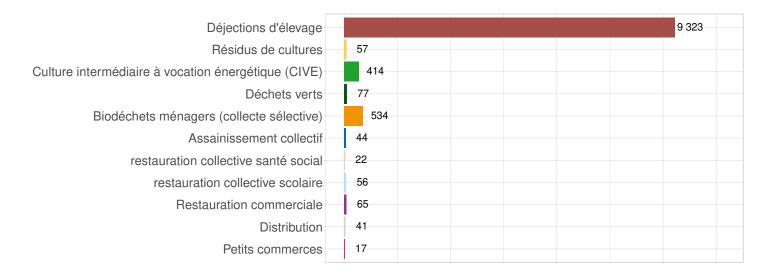
Détail des différentes zones :

- Pas de contraintes : zones favorables au développement de l'éolien sans aucune contrainte particulière;
- Zone d'exclusion potentielle : zones favorables au développement de l'éolien mais présentant une zone d'exclusion potentielle du fait de la présence de contraintes de voisinage;
- Point de vigilance : zones favorables au développement de l'éolien mais présentant au moins un point de vigilance ;
- Point de vigilance et zone d'exclusion potentielle : zones favorables au développement de l'éolien mais présentant au moins un point de vigilance et une zone d'exclusion potentielle du fait de la présence de contraintes de voisinage ;
- Enjeu fort : zones favorables au développement de l'éolien mais présentant au moins un enjeu fort qui pourrait potentiellement empêcher l'implantation;
- Enjeu fort et zone d'exclusion potentielle : zones favorables au développement de l'éolien mais présentant au moins un enjeu fort qui pourrait potentiellement empêcher l'implantation et une zone d'exclusion potentielle du fait de la présence de contraintes de voisinage;
- Implantation interdite : zones d'exclusion où l'implantation d'éolienne est interdite par la réglementation.

BIOGAZ


Il s'agit du potentiel annuel de méthanisation des différents gisements présents sur le territoire. Dans un premier temps, les quantités de matières sont déterminées par filière. Les gisements méthanisables déjà exploités par les installations de méthanisation sont ensuite retranchés. La part mobilisable restante de ces différentes quantités de matières est ensuite estimée puis convertie en volume de méthane et en énergie (MWh).

A noter:


- le potentiel tient compte de la part des gisements déjà exploités par les installations de méthanisation existantes;
- la région Auvergne-Rhône-Alpes étant importatrice de pailles de céréales (blé et orge), ce type de paille n'est pas comptabilisé dans le gisement méthanisable;
- la restauration collective (établissements scolaires et de santé) n'est pas considérée du fait de la difficulté d'avoir des données à l'échelle communale. Toutefois, la restauration collective ouvre des perspectives intéressantes car la mise en place d'une récupération des déchets y est plus simple que pour la restauration commerciale;
- les ratios de mobilisation utilisés pour les CIVE sont très faibles car basés sur des scénarios pessimistes.

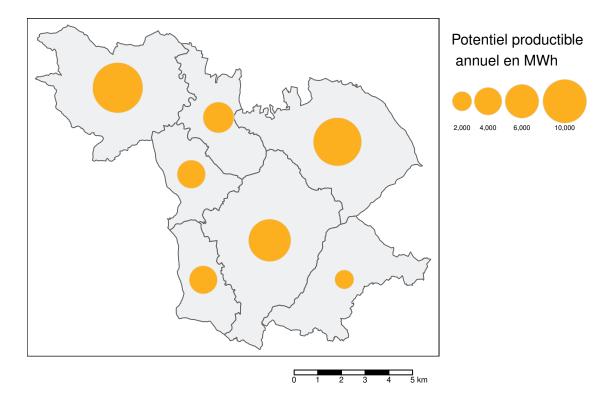
Potentiel productible annuel total restant sur le territoire: 10 649 MWh

Potentiel de méthanisation productible par commune en MWh¹

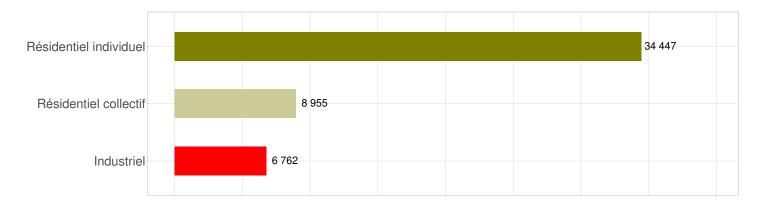
Potentiel de méthanisation en MWh sur le territoire par type d'intrants¹

^{1.} Déduction faite des gisements déjà exploités sur le territoire

SOLAIRE THERMIQUE


Il s'agit du potentiel de production annuelle de chaleur par l'installation de panneaux solaires thermiques dans les secteurs résidentiel et industrie. La méthodologie est fondée sur une approche par besoin en chaleur. Il est considéré ici que ces deux secteurs ont des besoins suffisamment importants pour qu'il soit intéressant de mettre en place des installations solaires thermiques. Les secteurs tertiaire et agriculture ne sont pas abordés ici. Sur la base de plusieurs hypothèses, le potentiel (productible annuel) de ces différents secteurs est calculé et exprimé à l'échelle communale. Pour le secteur résidentiel, l'hypothèse est faite que tous les bâtiments sont équipés de panneaux solaires thermiques. Pour le secteur industrie, on fait l'hypothèse d'un potentiel égal à 10% de la consommation énergétique de ce secteur.

A noter:


- les installations existantes sont prises en compte pour estimer le potentiel;
- la concurrence entre le photovoltaïque et le solaire thermique n'est pas prise en compte;
- l'alimentation de réseaux de chaleur par le solaire thermique n'est pas abordée ici;
- pour l'industrie, le gisement de chaleur fatale disponible est difficile à estimer et interagit avec des besoins de chaleur très variables.

Potentiel productible annuel total restant sur le territoire : 50 163 MWh

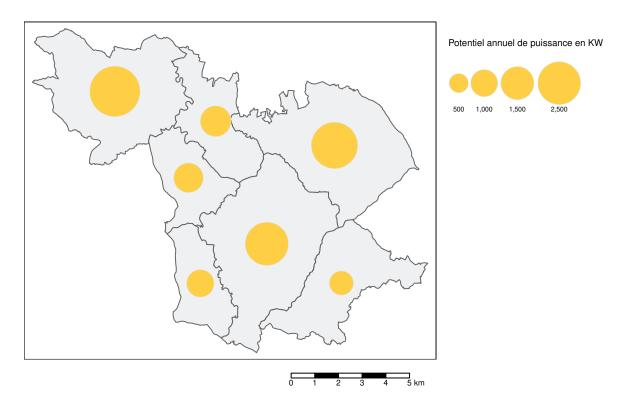
Potentiel solaire thermique productible par commune en MWh¹

Potentiel solaire thermique productible sur le territoire en MWh par secteur¹

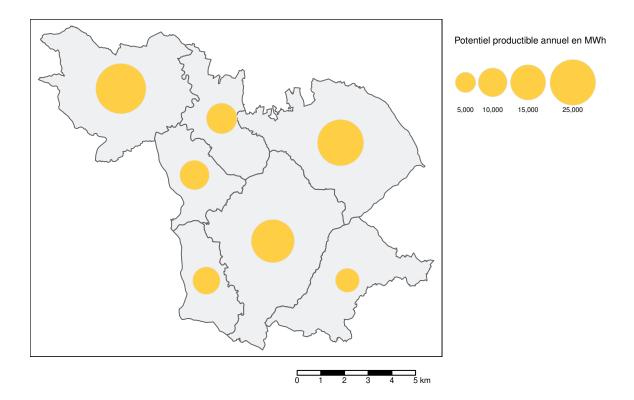
^{1.} Déduction faite de la production des installations déjà présentes sur le territoire

Solaire photovoltaïque

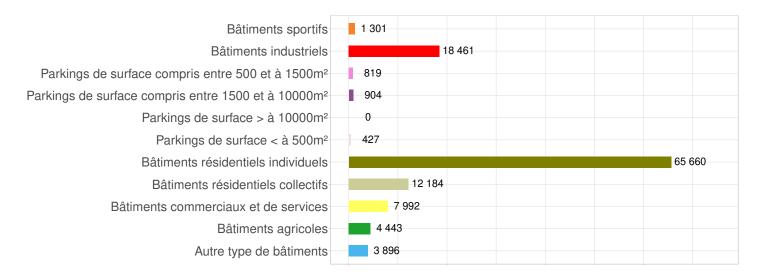
Il s'agit de l'estimation de la production photovoltaïque annuelle en considérant qu'un maximum de panneaux photovoltaïques est installé sur les bâtiments existants et les parkings (ombrières) du territoire.


Dans un premier temps, les bâtiments et parkings favorables au développement du PV sont identifiés et caractérisés (type de toit, orientation, présence de contraintes patrimoniales). Les installations de panneaux ailleurs que sur des bâtiments et parkings (par exemple des champs ou des friches industrielles) ne sont pas considérées ici. Puis, sur la base de plusieurs hypothèses, le potentiel (productible annuel) est calculé, notamment en fonction du rayonnement solaire, et exprimé à l'échelle communale. L'hypothèse est faite que tous les bâtiments sont équipés de panneaux photovoltaïques. En effet, les masques proches (ombrage lié aux bâtiments, à la végétation ou à la topographie locale) ne sont pas considérés ici.

A noter:

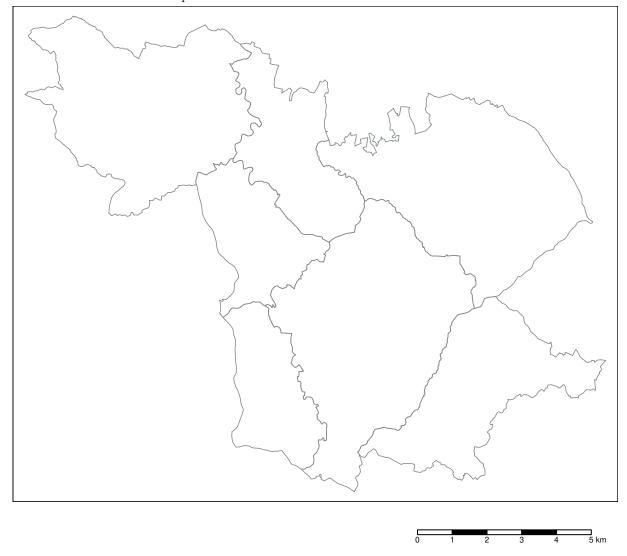

- le potentiel ne tient pas compte des installations existantes;
- la concurrence entre le photovoltaïque et le solaire thermique n'est pas prise en compte.

Potentiel productible annuel total sur le territoire : 116~086~MWh


Potentiel solaire photovoltaïque : puissance (kW) par commune

Potentiel solaire photovoltaïque: productible (MWh) par commune

Potentiel solaire photovoltaïque sur le territoire en MWh par type de bâtiment


Friches susceptibles d'accueillir des installations photovoltaïques

Ce travail est issu de l'étude friches lancée en octobre 2020 par le ministère de la transition écologique. Elle vise à établir une liste des friches industrielles et urbaines susceptibles d'accueillir des installations photovoltaïques. Cette étude pilotée par l'ADEME, et réalisée par le groupement CEREMA-TECSOL après un travail collaboratif avec les services régionaux et départementaux (DDT(M) DEAL DREAL DRIEAT), et après avis des communes concernées, a identifié 843 sites propices à l'implantation de centrales photovoltaïques en France.

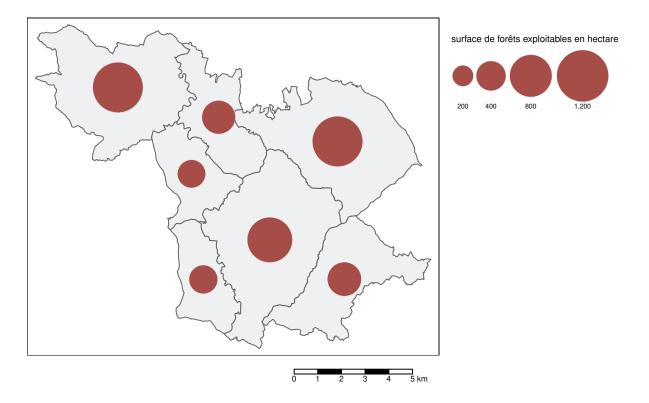
Plus d'informations sur le site du ministère de la transition écologique

Il convient cependant d'être conscient des limites de cette étude : :

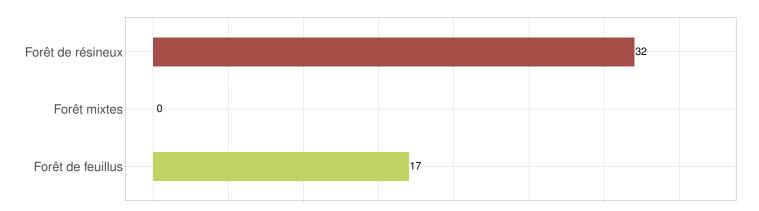
- Le recensement des sites est non exhaustif.
- Un nombre significatif de sites n'a pas été pris en compte du fait du manque d'informations sur leur localisation dans la base de recensement initiale.
- Un nombre important de sites potentiels n'a pu être confirmé comme « friche », soit par manque de temps, soit par manque de critère décisif au moment de la photo-interprétation.
- Il existe une forte hétérogénéité des résultats selon les départements. En effet, un travail plus ou moins important a été effectué selon les départements.

Sur le territoire, on dénombre 0 friche(s) susceptible(s) d'accueillir des installations photovoltaïques.

Bois


Il s'agit de caractériser les surfaces de forêts exploitables sur le territoire. Dans un premier temps, les zones de forêt où l'exploitation forestière est possible sont identifiées puis, dans un second temps, les surfaces de forêts exploitables potentielles sont exprimées à différentes échelles spatiales avec plusieurs filtres possibles.

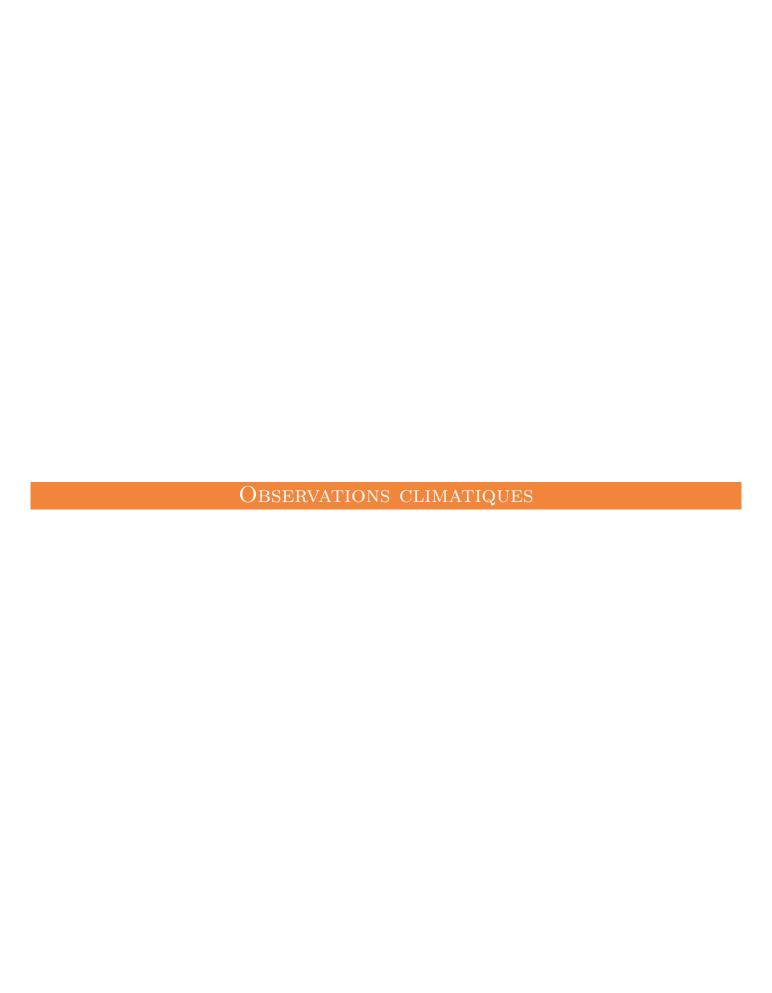
A noter:


- la méthode ne prend pas en compte l'existant : les forêts déjà exploitées sont comptées dans les forêts exploitables.
- aucune distinction bois d'œuvre / bois énergie n'est faite.

Surface de forêts exploitables sur le territoire : ${\bf 49~km2}$

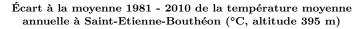
Estimation de la surface de forêts exploitables en hectares sur le territoire

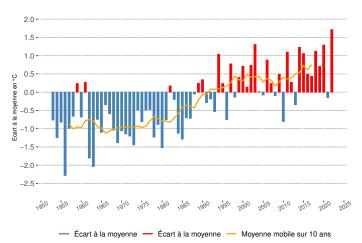
Surface de forêts exploitables en km2 sur le territoire par type d'essence



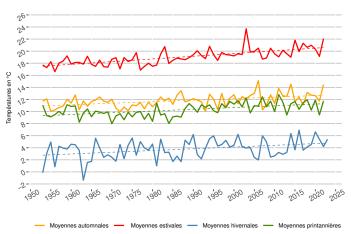
FLUX D'ÉNERGIE EN 2021

Flux d'énergie 2021 CC Loire et Semène


- Ce diagramme de Sankey représente les flux entre la production d'énergie primaire, les importations d'énergie primaire et de produits secondaires et la consommation d'énergie finale pour l'année 2021; il met en évidence la différence entre les ressources mobilisées et les ressources utiles. Certaines énergies sont transformées pour produire de l'électricité ou de la chaleur via les réseaux de chaleur urbains; d'autres sont directement utilisées par le consommateur final.
- Les données du diagramme de flux sont à climat réel.



TEMPÉRATURES MOYENNES


Les paramètres climatiques proposés dans cette section s'appuient sur une station de mesure météorologique du réseau de Météo France, située à Saint-Etienne-Bouthéon, station de référence représentative du climat du territoire CC Loire et Semène et disposant de données mensuelles homogénéisées pour le paramètre étudié, c'est-à-dire ayant fait l'objet d'une correction permettant de gommer toute forme de distorsion d'origine non climatique (déplacement de station, rupture de série...).

Évolution des températures moyennes annuelles et saisonnières à Saint-Etienne-Bouthéon (1953-2022 - altitude 395 m)

Évolution des températures moyennes saisonnières à Saint-Etienne-Bouthéon (°C, altitude 395 m)

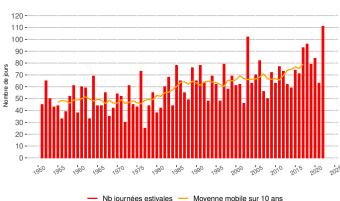
- Les températures moyennes annuelles ont augmenté de $+2.2^{\circ}\mathrm{C}$ à Saint-Etienne-Bouthéon entre 1953 et 2022.
- L'analyse saisonnière montre que cette augmentation est plus marquée au printemps (+2°C) et en été (+3.1°C).

Évolution de	es températures moyennes en °C
Hiver	2.0
Printemps	2.0
Eté	3.1
Automne	1.8
Année	2.2

- La tendance à l'augmentation des températures observée sur cette station de mesure est également constatée sur les autres stations suivies par l'ORCAE en Auvergne-Rhône-Alpes. Elle est plus importante en montagne qu'en plaine et se matérialise par une forte augmentation des températures à partir du milieu des années 80.
- Les variations interannuelles de la température sont importantes et vont le demeurer dans les prochaines décennies. Néanmoins, les projections sur le long terme en Auvergne-Rhône-Alpes annoncent une poursuite de la tendance déjà observée de réchauffement jusqu'aux années 2050, quel que soit le scénario. Sur la seconde moitié du XXIe siècle, l'évolution de la température moyenne annuelle diffère selon le scénario d'évolution des émissions de gaz à effet de serre considéré. Le seul qui stabilise l'augmentation des températures est le scénario RCP2.6 (politique climatique visant à faire baisser les concentrations en CO₂). Selon le RCP8.5 (scénario sans politique climatique), le réchauffement pourrait dépasser +4°C à l'horizon 2071-2100.

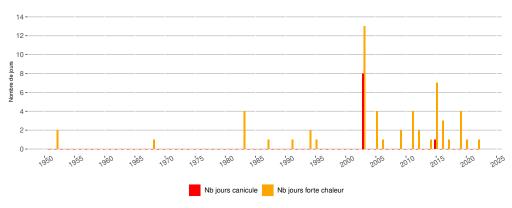
- Plus d'indicateurs «Climat»
- Météo France, services climatiques
- Météo France, climat HD
- DRIAS, les futurs du climat

Journées chaudes


Les paramètres climatiques proposés dans cette analyse se basent sur les données quotidiennes issues de la station de mesure météorologique du réseau de Météo France, située à Saint-Etienne-Bouthéon.

Évolution des températures maximales annuelles et du nombre de journées estivales à Saint-Etienne-Bouthéon (1953-2022 - altitude 395 m)

Évolution des températures maximales annuelles à Saint-Etienne-Bouthéon (°C, altitude 395 m)


Évolution du nombre de journées estivales à Saint-Etienne-Bouthéon (°C, altitude 395 m)

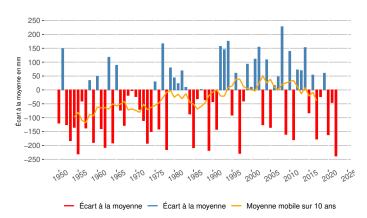
- La moyenne des températures maximales a augmenté, de l'ordre de + 2.5°C à Saint-Etienne-Bouthéon entre 1953 et 2022
- Le suivi du nombre de journées estivales, où la température maximale dépasse +25°C, montre une augmentation du nombre moyen de journées estivales entre les périodes 1963 1992 et 1993 2022 de l'ordre de 17 jours pour Saint-Etienne-Bouthéon.

Évolution du nombre de jours de canicule et de forte chaleur à Saint-Etienne-Bouthéon (1951-2022 - altitude 395 m)

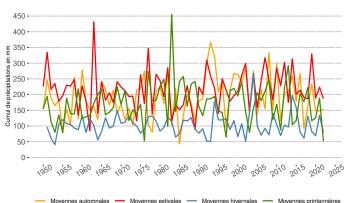
Évolution du nombre de jours de canicule et de forte chaleur à Saint-Etienne-Bouthéon (altitude 395 m)

• La notion de forte chaleur est définie à partir de seuils de températures minimales et maximales ¹, atteintes ou dépassées simultanément un jour donné. Une canicule correspond à une succession d'au moins 3 jours consécutifs de fortes chaleurs. Le troisième jour est alors compté comme le premier jour de canicule.

^{1.} Les seuils de température permettant de définir fortes chaleurs et canicules ont été choisis sur la base d'un travail conjoint entre Météo France et l'Institut National de Veille Sanitaire, en fonction de critères de santé publique. Ils correspondent aux seuils à partir desquels on a pu observer une surmortalité journalière supérieure de 50 à 100%, par rapport à la moyenne glissante sur 3 ans de la mortalité pour la même journée, pour 14 agglomérations françaises. Le tableau suivant indique les seuils retenus pour chaque département d'Auvergne-Rhône-Alpes :


Ī	département	Ain	Allier	Ardèche	Cantal	Drôme	Isère	Loire	Haute-Loire	Puy-de-Dôme	Rhône & Métropole de Lyon	Savoie	Haute-Savoie
	Seuil de température minimale en °C	20	18	20	18	21	19	19	18	19	20	19	19
	Seuil de température maximale en °C	35	34	35	32	36	34	35	32	34	34	34	34

Précipitations

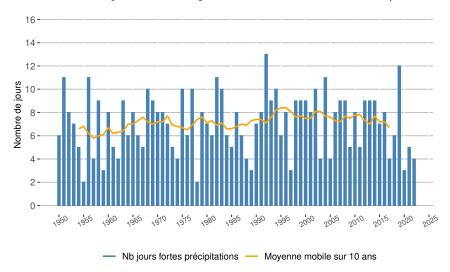

Les paramètres climatiques proposés dans cette section s'appuient sur une station de mesure météorologique du réseau de Météo France, située à Saint-Etienne-Bouthéon, station de référence représentative du climat du territoire CC Loire et Semène et disposant de données mensuelles homogénéisées pour le paramètre étudié, c'est-à-dire ayant fait l'objet d'une correction permettant de gommer toute forme de distorsion d'origine non climatique (déplacement de station, rupture de série...).

Évolution des cumuls annuels et saisonniers de précipitations à Saint-Etienne-Bouthéon (1950-2022 - altitude 395 m)

Écart à la moyenne 1981 - 2010 des cumuls annuels de précipitations à Saint-Etienne-Bouthéon (mm, altitude 395m)

Évolution des cumuls saisonniers de précipitations à Saint-Etienne-Bouthéon (mm, altitude 395 m)

- Le régime de précipitations présente une grande variabilité d'une année à l'autre.
- Les stations étudiées en Auvergne-Rhône-Alpes ne montrent pas de tendance nette sur l'évolution du cumul annuel des précipitations. Le régime global de précipitations a peu évolué sur les 60 dernières années. L'évolution des cumuls de précipitations entre la période trentenaire (1993 2022) et la précédente (1963 1992) est de l'ordre de 6.4% à Saint-Etienne-Bouthéon.
- Les conclusions sont identiques pour l'analyse saisonnière, qui ne révèle pas non plus de tendance nette.
- L'incertitude est grande quant à l'évolution des précipitations dans le court, moyen et long terme. Aucune projection ne démontre à l'heure actuelle d'évolution tendancielle, dans un sens ou dans l'autre ¹.

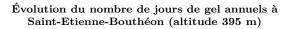

- Plus d'indicateurs «Climat»
- Météo France, services climatiques
- Météo France, climat HD
- DRIAS, les futurs du climat
- $1. \ Source\ et\ plus\ d'infos\ sur\ :\ M\'et\'eo\ France\ -\ Climat\ HD\ (http://www.meteofrance.fr/climat-passe-et-futur/climathd).$

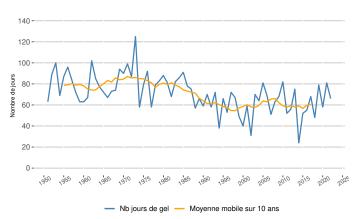
FORTES PLUIES

Les paramètres climatiques proposés dans cette analyse se basent sur les données quotidiennes de la station de mesure météorologique du réseau de Météo France, située à Saint-Etienne-Bouthéon.

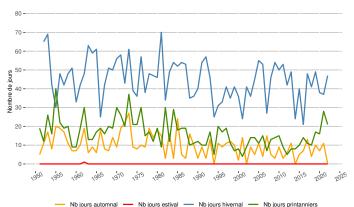
Évolution du nombre de jours de fortes pluies à Saint-Etienne-Bouthéon (1950-2022 - altitude 395 m)

Évolution du nombre de jours de fortes pluies à Saint-Etienne-Bouthéon (altitude 395 m)




- Un jour de fortes pluies correspond à un jour pour lequel le cumul des précipitations sur les 24 heures dépasse strictement 20 mm.
- L'observation des mesures de précipitations journalières montre une grande variabilité interannuelle du nombre de jours de fortes pluies.
- Sur cette période, on n'observe pas d'évolution marquée du nombre annuel de jours de fortes pluies, ni d'évolution saisonnière de ce paramètre.

Nombre de jours de gel

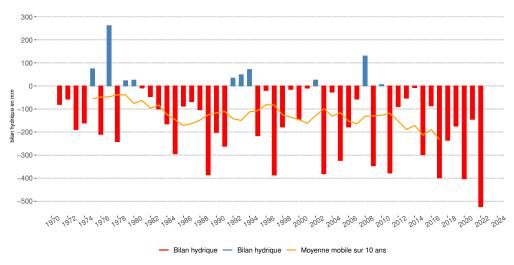

Les paramètres climatiques proposés dans cette analyse se basent sur les données quotidiennes de la station de mesure météorologique du réseau de Météo France, située à Saint-Etienne-Bouthéon.

Évolution du nombre de jours de gel par an à Saint-Etienne-Bouthéon (1950-2022 - altitude $395~\mathrm{m}$)

Évolution du nombre de jours de gel saisonnier à Saint-Etienne-Bouthéon (altitude 395 m)

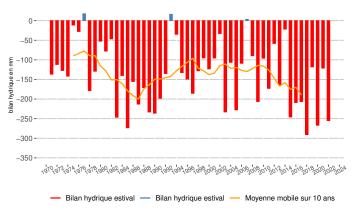
- Le nombre de jours de gel annuel a diminué en moyenne de -18.1 jours à Saint-Etienne-Bouthéon entre 1963 1992 et 1993 2022.
- L'analyse de l'évolution du nombre de jours de gel par saison, à la station de Saint-Etienne-Bouthéon entre 1963 1992 et 1993 2022 donne les résultats suivants :

Évolution d	u nombre de jours de gel
Hiver	-8.7
Printemps	-5.9
Eté	0.0
Automne	-4.1
Année	-18.1


BILAN HYDRIQUE

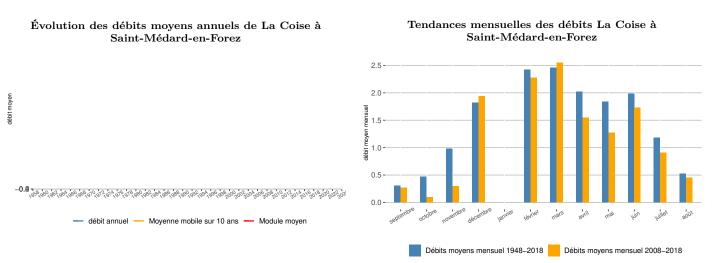
Le bilan hydrique est un indicateur de sécheresse, calculé par différence entre les précipitations et une estimation de l'évapotranspiration du couvert végétal issue de paramètres météorologiques (température, rayonnement, humidité, vent). Il permet d'observer l'état des ressources en eau de pluie du sol d'une année sur l'autre. Le bilan hydrique est un indicateur pertinent pour observer l'état des apports en eau d'une année sur l'autre et pour identifier des périodes de sécheresse et leur récurrence sur le long terme.

Les paramètres climatiques proposés dans cette analyse se basent sur les données quotidiennes issues de la station de mesure météorologique du réseau de Météo France, située à Saint-Etienne-Bouthéon.


Évolution du bilan hydrique annuel, printannier et estival à Saint-Etienne-Bouthéon (1971-2022, mm, altitude 395 m)

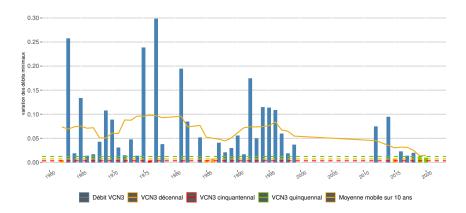
Évolution du bilan hydrique printanier à Saint-Etienne-Bouthéon (1971-2022, avril - juin, mm, altitude 395 m)

Évolution du bilan hydrique estival à Saint-Etienne-Bouthéon (1971-2022, juill - sept, mm, altitude 395 m)


- On observe, à partir des années 90, une baisse du bilan hydrique annuel, sur tous les départements d'Auvergne-Rhône-Alpes, ainsi que des déficits hydriques de plus en plus importants au printemps et en été. Ces évolutions sont dues essentiellement à l'augmentation de l'évapotranspiration des végétaux, du fait de l'augmentation générale des températures.
- Le bilan hydrique annuel a diminué de -57 mm à Saint-Etienne-Bouthéon entre les périodes 1971 2000 et 1993 2022.

- Plus d'indicateurs «Ressource en eau»
- Fiche « Bilan hydrique »
- Plan de bassin de l'Agence de l'Eau Rhône-Méditerranée-Corse
- Base de données de la banque HYDRO

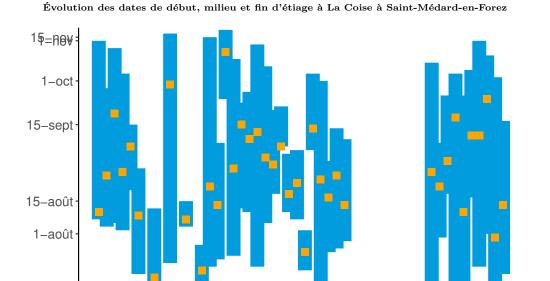
Débits des cours d'eau


Le suivi de la ressource en eau permet de détecter les risques de sécheresse par le constat de la baisse des niveaux des nappes ou des débits des rivières. Les paramètres proposés dans cette analyse se basent sur les données de débits quotidiennes de la station de mesure hydrologique du réseau HYDRO, nommée La Coise à Saint-Médard-en-Forez.

Débit moyen annuel et tendances mensuelles des débits de La Coise à Saint-Médard-en-Forez

- Sur les cours d'eau étudiés par l'ORCAE en Auvergne-Rhône-Alpes, on observe une grande hétérogénéité des résultats, ce qui ne permet pas de conclure de manière généralisée, à ce jour, sur le lien entre changement climatique et impact quantitatif sur la ressource en eau. Cependant les évolutions des variables présentées vont toutes dans le sens d'une diminution de la disponibilité de la ressource en eau, particulièrement sur la dernière décennie. Cette baisse est visible du printemps à l'été et est très marquée en début d'automne pour l'ensemble des cours d'eau. Ceci est vraisemblablement lié à la baisse des précipitations automnales ces dix dernières années. Pour certains cours d'eau, on constate également une avance d'un mois du pic du débit mensuel maximal et donc du pic de crue.
- La série de données disponible sur cette station de mesure présente plus de 20% de données manquantes sur au moins l'une des périodes climatiques étudiées, ce qui ne permet pas de calculer une tendance statistiquement fiable.

Variation des débits minimaux sur 3 jours consécutifs (VCN3) de La Coise à Saint-Médard-en-Fore


- Le VCN3 est le débit minimal ("moyen") calculé sur 3 jours consécutifs. Il correspond au débit minimal (ou débit d'étiage) enregistré pendant 3 jours consécutifs sur l'année considérée. Le VCN3 permet de caractériser une situation d'étiage sévère sur une courte période, c'est-à-dire le débit exceptionnellement faible d'un cours d'eau lors d'une période de basses eaux. Cet indicateur sert de référence pour la définition des seuils des arrêtés cadre sécheresse.
- La série de données disponible sur cette station de mesure présente plus de 20% de données manquantes sur au moins l'une des périodes climatiques étudiées, ce qui ne permet pas de calculer une tendance statistiquement fiable.

SÉVÉRITÉ DES ÉTIAGES

L'étiage correspond à une période où l'écoulement d'un cours d'eau est particulièrement faible. En période d'étiage, le niveau de débit moyen journalier est ainsi inférieur au débit moyen journalier que l'on observe habituellement, y compris en période de basses eaux.

Les paramètres proposés dans cette analyse se basent sur les données de débits quotidiennes de la station de mesure hydrologique du réseau HYDRO, nommée La Coise à Saint-Médard-en-Forez

Suivi de l'évolution de la saisonnalité des étiages de La Coise à Saint-Médard-en-Forez

• La saisonnalité des étiages est calculée à partir des débits journaliers, en observant : la date de début des étiages, date à partir de laquelle le déficit de volume est égal à au moins 10% du déficit de volume de l'année hydrologique considérée ; la date de fin des étiages, date à partir de laquelle le déficit de volume est égal à au moins 90% du déficit de volume de l'année hydrologique considérée ; la date de centre des étiages, correspondant à la date à partir de laquelle le déficit en volume est égal à au moins 50% du déficit de volume de l'année hydrologique considérée.

1990

1995

étendue de l'étiage milieu de l'étiage

5000

5002

• Sur la période d'observation, on ne constate pas d'évolution fortement marquée ou statistiquement significative des dates de début centre et fin d'étiage.

Plus d'infos:

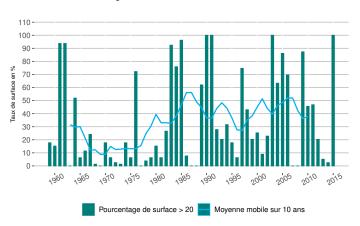
- Plus d'indicateurs «Ressource en eau»
- Plan de bassin de l'Agence de l'Eau Rhône-Méditerranée-Corse

1975

10,80

1082

1970


RISQUE MÉTÉOROLOGIQUE DE FEUX DE FORÊT

Les conditions favorables aux feux de forêt sont appréciées à partir de l'Indice Feu Météo (IFM), qui permet de caractériser les risques météorologiques de départs et de propagation de feux de forêt à partir de données climatiques (température, humidité de l'air, vitesse du vent et précipitations) et de caractéristiques du milieu (sol et végétation).

Évolution du risque météorologique de feux de forêt - Haute-Loire (1959-2015)

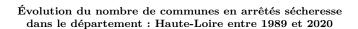
Évolution du nombre annuel de jours où l'Indice Feu Météo > 20 dans le département : Haute-Loire

Évolution de la superficie départementale où l'Indice Feu Météo > 20 pendant au moins 20 jours dans le département : Haute-Loire

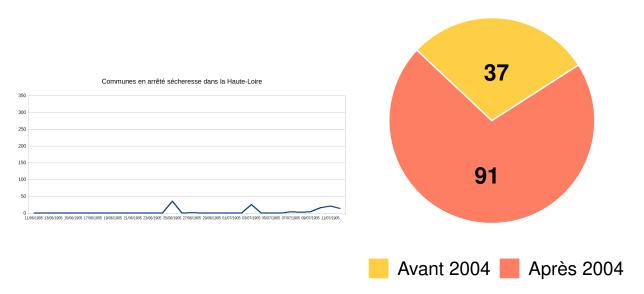
- En Auvergne-Rhône-Alpes, le risque météorologique de feux de forêt s'est accru depuis les années 80, surtout en été et dans les départements du sud de la région.
- Dans le département analysé ci-dessus, le nombre de jours où le risque météorologique de feux de forêt est élevé est passé de 13.6 jours entre 1959 et 1988 (période de 30 ans) à 18.3 jours entre 1986 et 2015 (période de 30 ans). La superficie départementale où le risque est élevé a également augmenté de 55.3% entre la période trentenaire 1959 et 1988 et la suivante 1986 et 2015.

- Plus d'indicateurs « Risque feux de forêt »
- Observatoire National des Risques Naturels et technologiques (Géorisques)
- Observatoire PermaFrance (risques liés au permafrost)
- Météo-France Pluies extrêmes
- IRSTEA Enquête permanente sur les avalanches (EPA)
- Base de Données sur les Incendies de Forêt en France (BDIFF)
- Observatoire Hydro-Météorologique Méditerranéen Cévennes Vivarais (OHMCV)
- Observatoire Multidisciplinaire des Instabilités de Versants (OMIV)
- Inventaires des glaciers , marges proglaciaires et phénomènes associés De Glaciorisk à GlaRiskAlp

ARRÊTÉS CATASTROPHES NATURELLES - SÉCHERESSE


La baisse du bilan hydrique climatique annuel et l'augmentation des déficits hydriques au printemps et en été entraînent un assèchement des sols.

Les sécheresses font partie des extrêmes climatiques à fort enjeu sociétal, compte-tenu du besoin vital d'eau, et de la dépendance de l'ensemble des activités humaines à la ressource en eau. Les événements que la France a connus, lors de l'été 2003 ou plus récemment en 2015, 2017, 2018 et 2019, ont rappelé la sensibilité de nos systèmes aux extrêmes hydrologiques et à la disponibilité de la ressource en eau (source Météo France).


Parmi ces activités, l'agriculture est particulièrement dépendante de cette ressource et les sécheresses impactent fortement les conditions et les résultats de productions de ce secteur d'activité.

Les données couvrent la période 1989-2020.

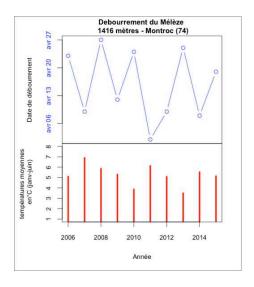
Évolution départementale des arrêtés de catastrophes naturelles - sécheresse - Haute-Loire

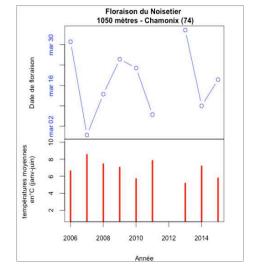


Répartition du nombre de communes en arrêtés sécheresse dans le département : Haute-Loire entre 1989-2004 et 2004-2020

- La sécheresse des sols fait l'objet d'arrêtés de catastrophes naturelles de plus en plus fréquents sur l'ensemble du territoire régional depuis 2003.
- En Haute-Loire, on note quelques pics pour des périodes chaudes sans noter d'augmentations particulières.

- Plus d'indicateurs «Évolution des arrêtés de catastrophes naturelles sécheresse»
- Caisse Centrale de Réassurance (société Anonyme détenue par l'État)




Les impacts du changement climatique sur les écosystèmes concernent le déplacement de certaines espèces, une modification de la phénologie, des modifications de la physiologie, de la génétique ou des modalités de reproduction, et enfin, des réductions ou extinctions locales d'espèces animales ou végétales. L'effet croisé des divers facteurs d'influence est difficile à évaluer et fait encore aujourd'hui l'objet de travaux de recherche visant au développement des connaissances scientifiques. Cependant certaines observations sont aujourd'hui disponibles. Les exemples ci-dessous concernent la région Auvergne-Rhône-Alpes.

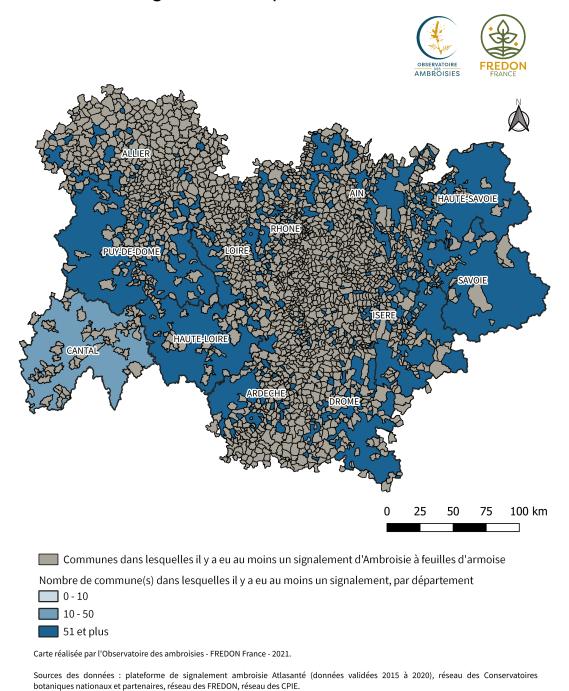
À l'heure actuelle, l'observation des impacts du changement climatique sur la biodiversité se développe principalement au travers de l'étude de la phénologie, c'est-à-dire les dates d'apparition des phénomènes saisonniers. Elle vise à comprendre l'influence des variations et des changements climatiques sur la croissance et la reproduction des espèces animales et végétales. La phénologie, lorsqu'elle est étudiée à long terme, apporte des indicateurs sur la réponse ainsi que la capacité d'adaptation et d'évolution des espèces clefs d'un écosystème face aux changements du climat.

Indicateurs phénologiques et relation avec les températures

Évolution des dates de débourrement du Mélèze et de floraison du Noisetier (2006-2015)

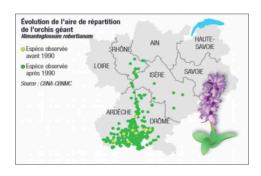
Évolution de la date de débourrement (ouverture des bourgeons) chez le mélèze (Larix decidua) en relation avec les températures moyennes enregistrées durant la période janvier à juin par une station température du CREA, sur le site de Montroc (Haute-Savoie) sur la période 2006 à 2015.

Évolution de la date de floraison chez le noisetier (Corylus avellana) en relation avec les températures moyennes enregistrées durant la période janvier à juin par une station température du CREA, sur le site de Chamonix Mont-Blanc (Haute-Savoie) sur la période 2006 à 2015 (donnée manquante en 2012).


- Les dates de débourrement du mélèze et de floraison du noisetier sont dépendantes des variations de température au printemps. Au cours des printemps chauds, comme en 2007, 2011 ou encore 2014, le débourrement et la floraison sont beaucoup plus précoces par rapport à la moyenne sur la période 2006-2015 (16 avril pour le débourrement du mélèze, 18 mars pour la floraison du noisetier). Inversement durant les printemps froids (2010, 2013), les dates sont plus tardives.
- Il est impossible, sur la base des données actuelles, d'estimer une tendance à la précocité des dates de débourrement et de floraison de ces deux espèces. Une période d'observation plus longue est nécessaire. Ces observations nous montrent cependant, qu'entre une année où le printemps est chaud et une année où il est froid, le mélèze est capable d'ajuster sa date de débourrement d'environ 25 jours, et le noisetier sa date de floraison de plus de 30 jours.

Aires de répartition des espèces

Dans le sud et le centre de la région, la remontée de l'influence du climat méditerranéen apporte avec elle des espèces jusqu'alors plutôt rencontrées dans le sud-est de la France.


Aire de répartition de l'ambroisie

Etat des connaissances sur la répartition de l'Ambroisie à feuilles d'armoise (*Ambrosia artemisiifolia* L.) en Auvergne Rhône Alpes entre 2001 et 2021

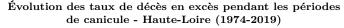
• L'ambroisie, dont l'évolution de l'aire de répartition est considérée comme en partie due à l'évolution du climat, peu présente dans le sillon rhodanien avant 1990, est maintenant largement répandue sur ces territoires.

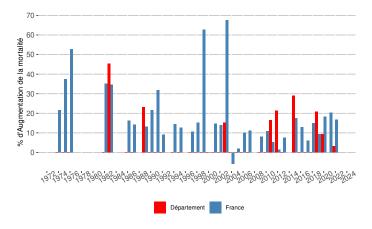
Aire de répartition de l'orchis géant

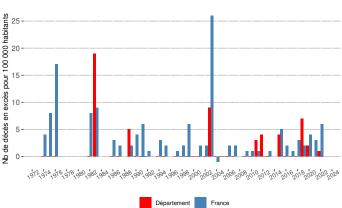
Aire de répartition de l'Himantoglossum robertianum (orchis géant) - Sources : Conservatoire botanique national alpin et tela botanica) - (Loisel.) P.Delforge

• Une espèce habituellement présente dans le sud de l'Ardèche et de la Drôme, comme l'Orchis Géant, est, par exemple, maintenant observée jusque dans le département du Rhône.

- Projet de recherche participative Phénoclim
- CREA Mont-Blanc
- Observatoire des saisons


Impacts sur la santé


Les impacts du changement climatique génèrent des risques sanitaires qui peuvent affecter de manière directe ou indirecte la santé des populations.

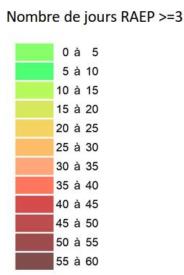

Hyperthermie et surmortalité lors d'épisodes de canicules

- Les vagues de chaleur et leur pendant réglementaire, les périodes de canicules, sont l'exemple le plus emblématique des influences du changement climatique sur la santé. Le Plan National Canicule de 2017, sur la base de critères sélectifs, cible plus particulièrement les vagues de chaleur susceptibles de constituer un risque pour la population exposée.
- En effet, en lien avec le phénomène «îlots de chaleur urbains » et la propriété des milieux minéralisés à retenir la chaleur, les épisodes de canicules sont associés à un risque d'hyperthermie et de déshydratation, en particulier chez les enfants, les personnes âgées, et les citadins. Ces éléments trouvent une résonance particulière dans un contexte d'urbanisation et de vieillissement de la population, comme l'illustre une analyse de la mortalité liée à la canicule de 2003.
- D'après Santé Publique France, **1118 canicules** sont identifiées **entre 1970 et 2016**. Les canicules les plus intenses et les plus longues sont concentrées en 1976, 1983, 2003 et 2015. La population exposée à au moins une canicule par an a doublé en France entre 1974-1983 et 2004-2013. Près de 32 000 décès en excès, dus aux canicules, sont observés en France entre 1974 et 2013.

Évolution de l'augmentation de la mortalité pendant les périodes de canicule - Haute-Loire (1974-2019)

- On observe une variation des taux de mortalité entre l'année 1974 et 2000 dans le département de la Haute-Loire.
- Alors que les vagues de chaleur sont plus fréquentes, les diminutions des taux de mortalité après 2003 sont probablement dues à la mise en place de dispositifs de surveillance sanitaire et de mesures de gestion des canicules.
- Au niveau départemental, les surmortalités les plus importantes sont associées aux canicules avec les intensités les
 plus élevées et les plus longues (1983, 2003, 2008, 2015). Les données de ces années ne présentent pas une rupture
 dans la relation température-mortalité, mais se distinguent par une intensité et une sévérité sans équivalent historique
 sur la période analysée.
- Ces tendances sont les mêmes pour les décès en excès pendant les périodes de canicules.

Pathologies cardio-vasculaires et respiratoires liées à la qualité de l'air


- À court terme, les effets observés lors d'une exposition à des concentrations importantes de polluants sont principalement l'aggravation de pathologies cardio-vasculaires et respiratoires préexistantes et des crises d'asthme.
- La présence de particules fines et de dioxyde d'azote à proximité des axes routiers, mais aussi l'ozone dans le sud du territoire, contribuent à l'aggravation de pathologies cardio-vasculaires et respiratoires pré-existantes. Ces aspects représentent un enjeu majeur de santé publique.

Allergies dues à l'augmentation de la concentration des pollens

- Les pollens sont sources de 12 à 45% des allergies, pathologie dont la prévalence est de 20% dans la population française. L'effet des pollens est aggravé par la pollution atmosphérique chimique, qui augmente la quantité de pollens émis par la plante, aggrave leur toxicité et augmente la sensibilité des personnes allergiques.
- Ceux de l'ambroisie, en particulier, font l'objet d'une attention spécifique pour leur caractère particulièrement allergisant. L'ambroisie affecte les territoires en dessous de 1 400 mètres d'altitude.

Cartographie annuelle régionale et territoriale 2022 du risque allergique à l'ambroisie (nb jours sup à RAEP 3) 1

- L'Ambroisie à feuilles d'armoise (Ambrosia artemisiifolia L.) est une espèce exotique envahissante originaire d'Amérique du Nord qui pose des problèmes sanitaires, agricoles, environnementaux et sociétaux en France. Deux autres espèces d'ambroisies présentes en France sont également classées nuisibles à la santé humaine : l'Ambroisie trifide (Ambrosia trifida L.) et l'Ambroisie à épis lisses (Ambrosia psilostachya DC).
- La population « fortement présumée allergique » à l'ambroisie, représente en Rhône-Alpes environ 155 000 personnes assurées du régime général en 2012 (soit un taux de 4,2% de la population des 6-64 ans). Le taux est inégalement réparti au niveau départemental puisqu'il atteint dans la Drôme 5,6% contre 2,8% en Haute-Savoie. La population «probablement allergique » à l'ambroisie, représente en Rhône-Alpes près de 198 000 personnes assurées du régime général en 2012 (soit un taux de 5,3% de la population des 6-64 ans). Le taux est inégalement réparti au niveau départemental puisqu'il atteint dans la Drôme 6,8% contre 3,5% en Haute-Savoie.
- Selon une étude publiée par la revue Environmental Health Perspectives, l'allergie au pollen d'ambroisie toucherait, en 2050, 2 fois plus de personnes qu'aujourd'hui du fait du rallongement des périodes de temps estival en lien avec le réchauffement climatique et de la propagation naturelle de la plante.

- Plateforme sur l'ambroisie (ATMO Auvergne-Rhône-Alpes)
- Reconnaître l'ambroisie (ATMO Auvergne-Rhône-Alpes)
- Les pollens, les pollinoses et autres maladies respiratoires allergies (ARS)

^{1.} RAEP : Risque d'Allergie lié à l'Exposition aux Pollen. Cet indice de risque allergique va de 0 (nul) à 5 (très élevé) et permet de définir un niveau de risque pour les allergiques de développer des symptômes. Un RAEP supérieur ou égal à 3, c'est-à- dire moyen, élevé ou très élevé correspond à un niveau où tous les allergiques au pollen concerné souffrent de pollinose. (Source ARS)

CANCERS LIÉS À L'EXPOSITION AUX ULTRAVIOLETS (UV)

• L'augmentation de l'ensoleillement fait craindre une augmentation de l'exposition de la population aux UV-A et UV-B, dont les propriétés mutagènes pour les cellules de la peau les placent au premier rang des facteurs de **risque** de cancer cutané. Les populations résidant en altitude sont particulièrement vulnérables puisque l'atmosphère y est moins protectrice. Ceci est d'autant plus vrai lorsque l'exposition est longue, comme c'est le cas pour les agriculteurs par exemple.

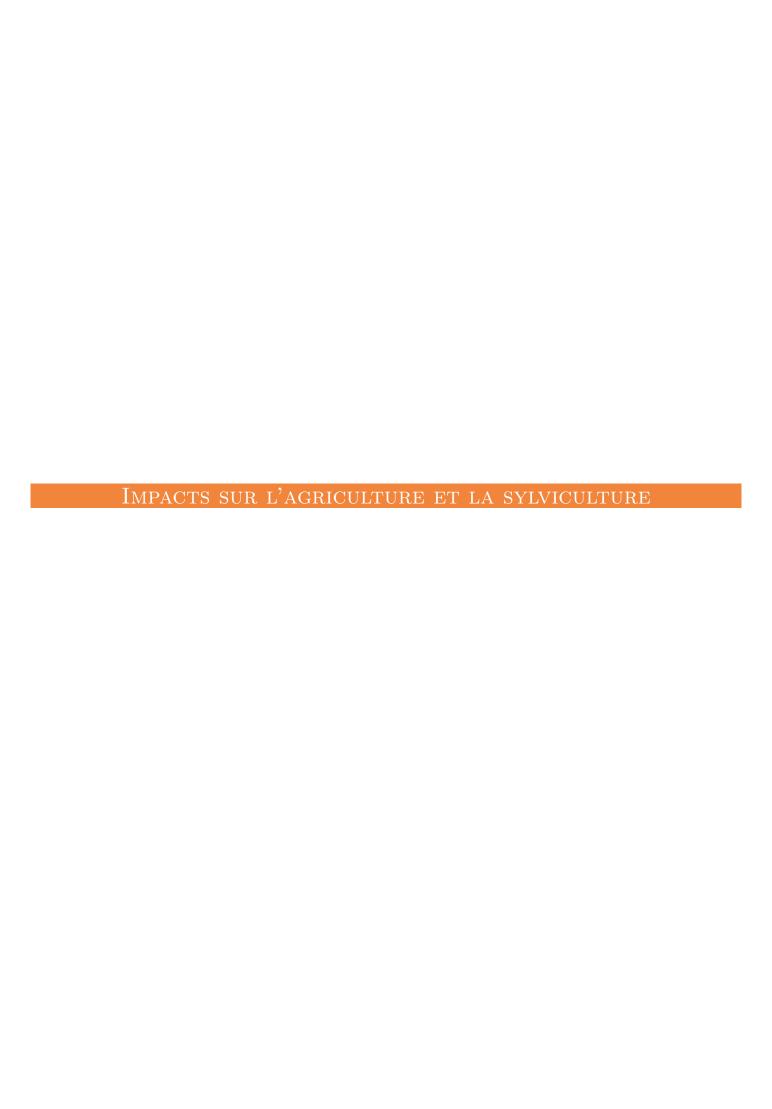
Risques sanitaires dus à une dégradation de la qualité des eaux

• Le rejet de polluants (urbains, industriels ou agricoles) dans une quantité d'eau plus faible augmente leur concentration, d'autant que l'augmentation des températures offre un milieu propice au développement microbiologique (notamment fongique et bactérien). Ces deux paramètres vont dans le sens d'une dégradation de la qualité à la fois chimique et microbiologique de l'eau. La baignade dans une eau de qualité dégradée peut conduire à des affections de santé par contact cutané, ingestion ou inhalation de l'eau.

Maladies à vecteur

• La remontée du climat méditerranéen le long du sillon rhodanien s'accompagne d'une migration d'espèces à la fois végétales et animales, parmi lesquelles des **vecteurs d'arboviroses comme le moustique tigre**. Son implantation est constatée le long du sillon rhodanien dans la Drôme, l'Ardèche et le Rhône.

- Site du RNSA (Réseau national de surveillance aérobiologique) sur les pollens
- Note nationale BSV Observatoire des ambroisies juillet 2019)
- Portail de lutte contre l'ambroisie en Auvergne-Rhône-Alpes
- État des connaissances « Santé et changement climatique » (déc. 2015)
- Observatoire régional de la santé en Rhône-Alpes
- Lutte contre le moustique tigre en Rhône-Alpes

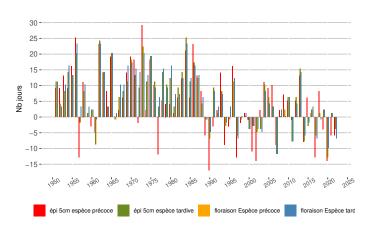


L'évolution des concentrations de polluants est en partie liée aux conditions climatiques. Ainsi, le changement climatique, en s'accentuant, aura un impact direct sur l'évolution de la qualité de l'air.

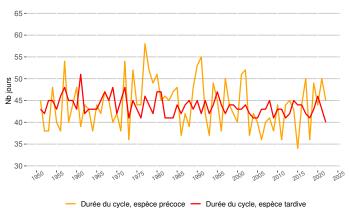
- L'ozone, polluant estival, est formé par une réaction initiée par le rayonnement solaire UV. Ainsi, un accroissement de l'ensoleillement et de la chaleur pourrait augmenter le niveau moyen d'ozone et avoir une incidence sur la survenue des épisodes de pollution à l'ozone.
- A proximité des axes routiers et dans les vallées alpines, les pics de pollution concernent les particules fines et le dioxyde d'azote.
- De plus, avec des étés plus secs, les feux de forêts pourront être plus nombreux, générant des émissions supplémentaires d'Hydrocarbures aromatiques polycycliques (HAP), de particules, de monoxyde de carbone (CO), et de composés organiques volatils non méthaniques (COVNM).
- En hiver, en cas d'augmentation des périodes anticycloniques associées à des inversions de température (ce qui favorise la stagnation des polluants dans les basses couches de l'atmosphère), les épisodes de pollution aux particules (en lien avec le chauffage individuel au bois peu performant) pourraient s'intensifier. A contrario, les températures plus douces pourraient conduire à une moindre utilisation des installations de chauffage et ainsi à une réduction des épisodes de pollution.
- L'augmentation de zones désertiques dans le sud de la région pourrait engendrer des épisodes de particules telluriques.
- La modification du climat devrait également s'accompagner de nouvelles maladies ou insectes ravageurs à traiter : le recours aux pesticides pour y faire face constitue un risque de pollution supplémentaire.
- Enfin, les dynamiques de concentration de pollens sont reconnues comme un des indicateurs du changement climatique. Leur concentration suit la courbe à la hausse des températures moyennes.

Plus d'infos:

• Changement climatique et pollution de l'air



Phénologie des prairies


Les paramètres climatiques proposés dans cette analyse se basent sur les données quotidiennes issues de la station de mesure météorologique du réseau de Météo France, située à Saint-Etienne-Bouthéon

Évolution des dates d'apparition des stades phénologiques des prairies - Saint-Etienne-Bouthéon (1951-2022)

Ecart à la moyenne 1951 - 2022 des date d'apparition des stades phénologiques à la station de Saint-Etienne-Bouthéon

Durée de présence des épis à la station de Saint-Etienne-Bouthéon

- On observe en Auvergne-Rhône-Alpes une avancée en précocité des stades d'épiaison et de floraison des prairies.
- Cette avancée varie entre 8 jours et 11 jours entre la période 1963-1992 et la période 1993-2022, à Saint-Etienne-Bouthéon, selon les stades phénologiques et les variétés de prairies étudiées.
- L'avancée en précocité des stades d'épiaison et de floraison des prairies est un marqueur pour l'évolution de la phénologie de toutes les cultures et productions agricoles, pour lesquelles on constate une avancée de l'apparition des stades phénologiques et, pour certaines cultures, un raccourcissement de la durée de certains stades.
- Pour les prairies, les rendements et la qualité, surtout liés à la date de fauche ne sont pas impactés par ces évolutions de long terme mais dépendent essentiellement des variations annuelles très fortes.

- Plus d'indicateurs « Phénologie des prairies »
- État des connaissances « Agriculture-sylviculture et changement climatique »

Rendement du blé tendre agricole

L'Agreste, service statistique du ministère de l'agriculture met à disposition des données annuelles de rendement moyen du blé tendre à l'échelle départementale, en quintaux par hectare (q/ha).

Évolution départementale des rendements de blé tendre - Haute-Loire

- On constate dans le département, une rupture dans la progression des rendements en blé tendre qui se manifeste au milieu des années 1990. Cette évolution suit une période de hausse générale à l'échelle nationale depuis les années 1950 (non visualisée ici faute de données), qui s'explique par l'amélioration variétale combinée à l'accroissement de la technicité de culture (préparation de sol, semis, fertilisation, protection phytosanitaire, récolte).
- D'après INRAE et Arvalis, ce phénomène de stagnation des rendements, qui s'observe sur l'ensemble de la France métropolitaine, avec des spécificités régionales, résulte pour moitié du changement climatique. Ce dernier a accru les stress hydrique et thermique en fin de cycle cultural, avec une occurrence plus fréquente des accidents climatiques (sécheresse, canicule).
- L'avancement des dates de semis, le choix de variétés précoces adaptées au contexte agronomique local, et la recherche de variétés tolérantes aux températures élevées figurent parmi les principaux leviers d'adaptation pour les céréaliers, en complément de politiques plus globales de préservation de la ressource en eau et de gestion durable des sols.

- Fiche « Rendement du blé tendre »
- État des lieux sur le changement climatique et ses incidences agricoles en région Auvergne-Rhône-Alpes (Livret ORACLE 2023) : impacts agricoles du changement climatique sur d'autres cultures (partie 3 du livret)

L'OBSERVATOIRE ORACLE

ORACLE Auvergne-Rhône-Alpes (Observatoire régional sur l'agriculture et le changement climatique) est un observatoire mis en oeuvre par la Chambre régionale d'agriculture ayant pour objectif de partager des indicateurs de suivi du changement climatique et de ses conséquences pour l'agriculture en région afin d'envisager une adaptation des systèmes agricoles.

ORACLE Auvergne-Rhône-Alpes est intégré au sein de la stratégie climat de la Chambre d'agriculture régionale Auvergne-Rhône-Alpes. De nombreux partenaires institutionnels sont également parties prenantes du projet.

L'observatoire permet de suivre des indicateurs rassemblés par familles :

- climatiques;
- agro-climatiques;
- d'impact agricole du changement climatique qui rendent compte des changements subis sur les pratiques agricoles, le matériel biologique, les paysages, les filières liés de près ou de loin au changement climatique. La relation de causalité n'est pas toujours univoque et sera spécifiée au cas par cas;
- d'adaptation au changement climatique qui rendent compte des modifications choisies des pratiques agricoles pour faire face au changement climatique;
- d'atténuation du changement climatique qui rendent compte des leviers actionnés pour contribuer à réduire l'impact de l'agriculture sur le changement climatique et améliorer le stockage du carbone.

Une complémentarité entre ORACLE et ORCAE est également recherchée. Des renvois vers les indicateurs d'ORACLE sont présents au sein des pages impacts sur l'agriculture des profils ORCAE. Les compléments apportés par ORACLE permettent d'illustrer des tendances climatiques et leur impact sur les productions agricoles actuelles (modification des bassins favorables à certaines productions, évolution des dates des travaux agricoles, dynamique des rendements agricoles...).

NB: les valeurs des indicateurs du changement climatique (températures, précipitations, nombre de jours de gel) diffusées par ORACLE et ORCAE peuvent présenter des différences. Elles s'expliquent par des choix différents en termes de :

- stations de référence départementales;
- méthodologie de calcul des évolutions;
- périodes de référence;
- historique des données.

Pour connaître les périodes de référence prises en compte pour le calcul des indicateurs ORCAE, consulter la méthodologie.

- ORACLE Auvergne-Rhône-Alpes
- État des lieux sur le changement climatique et ses incidences agricoles en région Auvergne-Rhône-Alpes (Livret ORACLE 2023)

Périmètre du territoire

Code INSEE	Nom commune
43012	Aurec-sur-Loire
43153	Pont-Salomon
43177	Saint-Didier-en-Velay
43184	Saint-Ferréol-d'Auroure
43205	Saint-Just-Malmont
43227	Saint-Victor-Malescours
43236	La Séauve-sur-Semène

GLOSSAIRE

Climat réel / climat normal : Il est généralement admis que la consommation de chauffage est proportionnelle à la rigueur climatique de l'hiver. Le bilan à climat normal correspond aux consommations corrigées des effets de température ; les consommations à climat réel sont celles qui ont été effectivement consommées au cours de l'année.

CMS: Combustibles Minéraux Solides

ECS: Eau Chaude Sanitaire

Énergie finale : L'énergie finale est l'énergie livrée aux consommateurs pour être convertie en énergie utile. Par exemple : électricité, essence, gaz, gazole, fioul domestique, etc.

Énergie primaire : L'énergie primaire est la première forme de l'énergie directement disponible dans la nature : bois, charbon, gaz naturel, pétrole, vent, rayonnement solaire, énergie hydraulique, géothermique... L'énergie primaire n'est pas toujours directement utilisable et fait donc souvent l'objet de transformations : exemple : raffinage du pétrole pour avoir de l'essence ou du gazole, fission de l'uranium dans une centrale nucléaire pour produire de l'électricité.

Énergie utile : L'énergie utile est l'énergie dont dispose le consommateur, après transformation par ses équipements (chaudières, convecteurs électriques, ampoules électriques). La différence entre l'énergie finale et l'énergie utile tient essentiellement au rendement des appareils utilisés pour transformer cette énergie finale.

Énergie renouvelable : Énergie produite à partir de sources non fossiles renouvelables, à savoir : énergie éolienne, solaire, aérothermique, géothermique, hydrothermique, marine et hydroélectrique, biomasse, gaz de décharge, gaz des stations d'épuration d'eaux usées et biogaz (définition de la directive 2009/28/CE du 23 avril 2009 relative à la promotion de l'utilisation de l'énergie produite à partir de sources renouvelables).

Énergies renouvelables électriques (ENRelec): Agrégat statistique qui regroupe l'ensemble des énergies renouvelables électriques: sources d'électricité hydrauliques, éoliennes, photovoltaïques, ou valorisation électriques de ressource biomasse.

Énergies renouvelables thermiques (ENRt): Agrégat statistique qui regroupe l'ensemble des énergies renouvelables non électriques. Sont donc exclues les sources d'électricité hydrauliques, éoliennes, photovoltaïques et géothermiques (haute température) qui, dans les bilans de l'énergie, sont comptabilisées à la rubrique électricité. Les ENRt comprennent le bois de chauffage, commercialisé ou non, les déchets urbains et industriels renouvelables, la géothermie valorisée sous forme de chaleur, le solaire thermique, les résidus de bois et de récoltes, le biogaz, les biocarburants et les pompes à chaleur.

Organo-carburants : Le terme organo-carburants a été déposé en 2010 par Rhônalpénergie - Environnement (RAEE). RAEE propose l'utilisation de ce terme générique en substitution au terme contesté de "biocarburants". Son usage repose sur un règlement garantissant les qualités environnementales et sociales.

"Pouvoir de réchauffement global": La durée de vie dans l'atmosphère des gaz à effet de serre varie énormément : douze ans pour le méthane, une centaine d'années pour le gaz carbonique et... 50 000 ans pour l'hexafluorure de soufre! Ceci veut dire que le gaz carbonique produit aujourd'hui fera encore effet dans un siècle. Les émissions de gaz à effet de serre sont généralement exprimées en tonne équivalent CO2 (teq CO2), unité commune pour l'ensemble des gaz qui prend en compte leurs caractéristiques (durée de vie et capacité à réchauffer la planète). 1 kteqCO2 = 1000 teqCO2. Pour obtenir une équivalence entre eux, on définit le pouvoir de réchauffement global d'un gaz (PRG). C'est le ratio entre le réchauffement provoqué par 1 kg de gaz et 1 kg de CO2. Dans les bilans publiés dans le cadre du protocole de Kyoto, le ratio est exprimé pour des effets comparés à 100 ans. Pour 1 kg de méthane émis en 2000, son effet à l'horizon 2100 sera le même que 21 kg de CO2 émis en 2000. Le PRG 100 ans du méthane est donc de 21.

PP: Produits pétroliers

Tep: La tonne d'équivalent pétrole (tep) est une unité de mesure de l'énergie couramment utilisée par les économistes de l'énergie pour comparer les énergies entre elles. C'est l'énergie produite par la combustion d'une tonne de pétrole moyen, ce qui représente environ 11 600 kWh. Les anglo-saxons utilisent également le baril équivalent pétrole, ou boe (barrel of oil equivalent) qui vaut environ 0,135 tep, selon l'équivalence 1 tep = environ 7,3 barils (le baril étant une mesure de capacité valant 159 litres). Quelques exemples d'équivalences : 1 tonne de charbon = 0,6 tep environ, 1 tonne d'essence = 1,05 tep, 1 tonne de fioul = 1,00 tep, 1 tonne de bois = 0,3 tep. 1ktep = 1000 tep.

Unités : Les préfixes représentent des multiples des unités : kilo (k) pour mille, méga (M) pour million, giga (G) pour milliard, téra (T) pour mille milliards.